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Abstract

Research in computational linguistics, computer graphics and autonomous
agents has led to the development of increasingly sophisticated communicative
agents over the past few years, bringing new perspective to machine translation
research. The engineering of language-based smooth, expressive, natural-looking
human gestures can give us useful insights into the design principles that have
evolved in natural communication between people. In this paper we prototype a
machine translation system from English to American Sign Language (ASL),
taking into account not only linguistic but also visual and spatial information
associated with ASL signs.

1 Introduction

As the third or fourth most widely used language in the United States [23],
American Sign Language (ASL) is the primary communication means used by
members of the North American deaf community. There is linguistic, psycholin-
guistic, and neurological evidence in favor of ASL being a fully developed natural
language [18]. It is not a derivative of English — it is a complete language with
its own unique grammar [11, 28, 30].

While the last ten years have seen an ever increasing development of machine
translation systems for translating between major spoken natural languages,
translation to and from ASL is virtually ignored by the machine translation
community. Yet, ASL translation systems are very important to the deaf. Sys-
tems that simply render spoken language as text are inadequate for two reasons:
First, many deaf people in the United States have difficulties with reading and
writing English; in fact, some do not read above the fourth-grade level. A text-
based system would make it impossible for these people to follow and understand
a conversation in real-time. Second, if spoken language is rendered as text, all
the information on intonation, pitch, and timing is lost, even though this in-
formation is important (e.g., the reason why people prefer dubbed movies over
subtitled movies). ASL, on the other hand, is capable of conveying this infor-
mation through the intensity of the signs and facial expressions. As a result, a



fully-functional ASL machine translation system would be far superior to a text-
based system when it comes to conveying all the nuances of spoken language.

ASL machine translation systems have been neglected largely because of the
specialty of ASL as a natural language. Not so long ago ASL was still looked
upon as ‘merely gestures’ — non-linguistic, pantomimic presentations of concrete
concepts. For several years some researchers believed that ASL lacked any rigid
structure on the sentence-level, which obviously made it very hard to translate
any other natural language into ASL. To make things worse, ASL is produced
in a modality (or channel) that is greatly different from English: ASL is a signed
language; it cannot be spoken; and there is currently no accepted form of written
ASL [30]. The earlier commonly-used means of referring to signs in writing is
glosses notation, whereby signs are represented in their natural order by upper-
case words taken from their nearest spoken counterparts. A major drawback of
this representation is that it does not show what the translated signs look like.!
More recent methods use relatively iconic, picture-like symbols to represent the
positions and movements of the hands, as well as the facial expressions, but fail-
ing to incorporate spatial elements into the representation, this kind of writing
system can still cause confusion in complex signs. An ideal approach would use
three dimensional (3D) representations of ASL signs being performed, allowing
examination from different perspectives, and making accurate understanding and
imitation more feasible. This clearly imposes a severe constraint on the target
language generation of a machine translation system, however.

Our approach involves two steps: (1) a translation from an input English
sentence into an intermediate representation, taking into account aspects of syn-
tactic, grammatical and morphological information; (2) an interpretation of the
intermediate representation as a motion representation with a small set of qual-
itative parameters which can be further converted to a large set of low-level
quantitative parameters that actually control the human model to produce ASL
signs.

For the intermediate representation, we use glosses notation with embedded
parameters. To generate the intermediate representation from the input sen-
tence, we need to (i) analyze the word order and figure out which sign order is
more appropriate, and (ii) generate the glosses and embed parameters indicating
grammatical information, such as sentence types, facial expressions, and mor-
phological information. We use a Synchronous Tree Adjoining Grammar (STAG)
[21,20] for mapping this information from English to ASL.

A sign synthesizer is employed for the second step. It assumes that the em-
bedded glosses representation is already in correct sign order with appropriately
assigned grammatical and morphological parameters. For each sign, it first uses
the gloss as an index to look up a sign dictionary, which stores the parame-
terized motion templates for all available ASL signs; then uses the embedded
parameters to modify the default parameters defined in the motion template to
get the effective parameters. The sign synthesizer employs Parallel Transition

! Although the system described in this paper does use glosses in its internal interme-
diate representation, it does not use them in the final output.



Networks (PaT-Nets) [3] to achieve the smooth transitions between signs. PaT-
Nets in turn call Jack Toolkit and Jack Visualizer functions to generate the final
animation [8].

We implemented this system and called it TEAM (Translation from English to
ASL by Machine). The major contributions of this work are:

— To our knowledge, this is the first machine translation system from English
to 3D animated ASL, taking into consideration not only linguistic but also
visual and spatial information associated with ASL.

— It demonstrates that a machine translation system for ASL that uses full
natural language processing and full graphics in real time is feasible.

— Our system is not limited to ASL only. Its flexibility allows it to be easily
expanded to other signed languages.

2 Graphics Modeling

In order to output true ASL we need a fully articulated 3D human model. The
model should have finely articulated hands, highly expressive arms and body, as
well as controllable facial expressions. In addition, we need a fast computational
model to procedurally generate a wide range of natural-looking ASL signs.

2.1 Human Model

Our human model (shown in Figure 2.2) has 80 joints with a total of 135 degrees
of freedom [8]. The torso is composed of 17 joints in the spine between the waist
and the neck. A forward kinematics algorithm is employed to position the torso
towards a specified set of joint angles. The movements of the arms are specified
through key time and end-effector positions (keypoints). An analytical inverse
kinematics algorithm computes shoulder and elbow rotations given a specified
keypoint.? The hand is finely articulated. We use a left /right-independent library
of joint angles to shape the hand into a variety of pre-determined positions.
Currently we use MIRALab’s Face model [17] for animating facial expressions.
Facial expressions play an important role in ASL’s grammatical process.

2.2 Effort and Shape

Our approach in generating ASL signs and dynamically changing their motion
characteristics is based on recent work [6,31] on building computational mod-
els of a particularly important system called Laban Movement Analysis (LMA).
LMA has four major components — Body, Space, Shape, and Effort. The com-
ponents of LMA that we cover are Effort and Shape [4]. Effort comprises four

2 An inverse kinematics algorithm computes a set of joint angles that satisfies some
constraints, given a desired position and orientation of the end-effector, i.e., the
hand. The algorithm we are using is made suitable for an anthropomorphic arm
[27].



motion factors: Space (S), Weight (W), Time (T), and Flow (F). Each motion
factor is a continuum between two extremes: (1) indulging in the quality and
(2) fighting against the quality. These extreme Effort elements are seen as basic,
‘irreducible’ qualities, which means that they are the smallest units of change in
an observed movement. Table 2.2 shows the LMA Effort elements — the extremes
for each motion factor. The Shape dimensions in LMA are Horizontal (H), Ver-
tical (V), Sagittal (S), and Flow (F1). The terms used to describe the extreme
attitudes towards these dimensions are Spreading and Enclosing, Rising and
Sinking, Advancing and Retreating, Opening and Closing, respectively. In gen-
eral, Shape changes occur in affinities with corresponding Efforts (Table 2 [4]).

| Effort | Indulging | Fighting
Space Indirect Direct
Weight Light Strong
Time Sustained Sudden
Flow Free Bound

Table 1. Effort Elements

|Dimensi0n|Shape |Eff0rt |

Vertical Rising Weight-Light
Sinking  [Weight-Strong

Horizontal |Enclosing |Space-Direct
Spreading [Space-Indirect

Sagittal Retreating| Time-Sudden
Advancing| Time-Sustained

Fig. 1. Human Model

Table 2. Effort and Shape Affinities

Effort and Shape qualities are expressed using numeric parameters that can vary
along distinct scales. Each dimension of Effort and Shape is associated with a
scale ranging from —1 to +1. Effort parameters are translated into low-level
movement parameters which affect the dynamics of the underlying movement,
while Shape parameters are used to modify key pose information, which affect
the dimensions of space of the underlying movement. For more technical details
about Effort and Shape see [6].

3 ASL Linguistics

3.1 ASL Phonology

William Stokoe was the first linguist to recognize and analyze ASL as a language
in its own right. In his seminal work [24,25] a notational system (now called
“Stokoe notation”) was devised to analyze each ASL sign into three phonolog-



ical ® components: handshape, location (place of articulation), and movement.
Battison [5] and Frishberg [10] presented evidence that these aspects of the sign,
along with orientation of the palm of the hand, are internal phonological param-
eters that are necessary for a complete and efficient description of ASL signs.
Changing any of these parameters of a sign may make a new sign and therefore
change the meaning of the sign.

Simultaneity and Sequentiality Siple [22] and Kilma and Bellugi [15] have
pointed out that the phonological components in ASL exhibit a high degree of
simultaneity — they are not produced sequentially. All of the components should
be simultaneously present when the signs are produced. However, this does not
necessarily mean that sequentiality is not at all incorporated in the phonology of
ASL. Linguists [16] proposed that the sequential production of components did
indeed need to be represented in ASL phonology, for example, ASL signs move
to and from locations.

3D Modeling ASL Phonology Under the analysis above, it is safe to say ASL
signs can be sequentially segmented into one or more phonologically significant
units, which are simultaneously associated with certain handshapes, locations,
and orientations. In order to accurately model an ASL sign, we need to take into
consideration all these phonological parameters, as well as the simultaneity and
sequentiality characteristics.

Seamless SolutionsT™ [1] created some interactive 3D avatars that can
communicate in ASL, but they did not take into account the phonological infor-
mation and their avatars basically perform in signed English rather than ASL.
SignSynth [12] uses Perl CGIs (Common Gateway Interfaces) to generate 3D an-
imation in VRML format from a phonological specification, but currently only
the finger-spelling module is reported to be working. The lack of a good in-
verse kinematics procedure prevents it from realizing the remaining and more
important modules (arm movement, etc.).

Our approach is phonologically-based and more comprehensive. The location
and movement for a specific sign are specified by keypoints, which are relative
to the human model’s shoulders. Keypoints can be either Goal or Via keypoints.
Goal keypoints define a general movement path; the hand follows a path which
pauses at each Goal keypoint. Via keypoints direct the motion between Goal key-
points without pausing. A fast analytical inverse kinematics algorithm computes
the shoulder and elbow rotations, given a keypoint specified by three-dimensional
position coordinates and an elbow swivel angel [27]. The base of the wrist acts as
the end-effector indicating the keypoints. Wrist orientations (which decide the
palm orientations) and handshapes can also be specified.

3 The terms phonology and phonological are used to describe ASL sign formation, even
though these terms are derived from speech-related phenomena. They are widely
used in ASL linguistics research.



3.2 ASL Morphology

ASL differs dramatically from English in the mechanisms — inflections and deriva-
tions — by which its phonological units are modified.

ASL Inflectional Morphology ASL exhibits a very rich set of inflectional
variations [15]. Rather than affix-like sequential additions to signs, inflections in
ASL involve superimposed spatial and temporal contrasts affecting the phono-
logical movement. There are quite a few different inflectional processes in ASL.
In this paper we focus on inflections for temporal aspect, reflecting distinctions
such as frequently, slowly, and quickly; inflections for manner, such as carefully,
and haphazardly; and inflections for degree, such as very and a little bit. The
nuances of meaning expressed by these reflectional processes represent a consid-
erable range of semantic distinctions.

ASL Derivational Morphology In addition to inflectional processes, ASL
has a wide variety of methods that expand the phonology by regular systematic
changes in the phonological root and result in the formation of related phonolog-
ical units. At present, we focus on the so-called paired noun-verbs [15,26] which
are pairs of noun and verb that share the same phonological characteristics and
semantic meaning (for example, FLY and AIRPLANE, SIT and CHAIR). To a
non-signer the distinction between paired noun-verb may not be readily appar-
ent unless the two are performed consecutively. However, there is a consistent
and standardized distinction between them in directionality, manner, frequency,
tension, and/or evenness of the underlying movement.

Systematic Changes Underlying Inflectional and Derivational Pro-
cesses As mentioned, inflectional and derivational morphology can be achieved
by systematically changing Effort and Shape parameters. In the following, we
show an example of how to embed Effort parameters.

TOP-LEVEL
sign / SIGN / SPACE WEIGHT TIME FLOW

SPACE WEIGHT

_[directly] / _(0.2, _, _, ) _[stronglyl / _(_, 0.2, _, )
_[lindirectlyl / _(-0.2, _, _, ) _[lightlyl / _(_, -0.2, _, )
- / _C0.0, _, _, ) - / _(_, 0.0, _, 1)
TIME FLOW

_[slowlyl / (., -, -0.2, ) _[freelyl / (., -5 -, 0.2)
_[quickly] / (., sy 0.2, ) _[boundly]l] / _(_, _, _, 0.2)
_ / _(_, _, 0.0, D) _ / _(_, _, _, 0.0)

In this example, sign slowly, is translated into embedded glosses notation
SIGN(0.0, 0.0, -0.2, 0.0).* Other inflections as well as derivations can be

4 The parameter values are set arbitrarily, for example, —0.2 stands for a noticeable
change in the Sustained quality.
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John slept quietly John | Quietly
slept

Fig. 2. Substituting and adjoining TAG trees.

done similarly. For example, because the nouns in the paired noun-verbs con-
sistently have a smaller movement that is restrained in dimensions of space, we
may assign smaller Shape (or Effort) parameter values to derive the nouns from
their associated verbs. Our parameterized representation on the phonology level
offers us the advantage that we do not have to list paired nouns and verbs as in-
dependent items in the dictionary but can derive one from the other consistently.
Our approach also complies with the hypothesis shared by linguistic researchers:
that is, the underlying forms of roots may be abstract items that do not occur
as surface forms in the language [7].

4 Translating English Sentences

4.1 Synchronous Grammar

We use a Lexicalized Tree Adjoining Grammar based system for translating be-
tween English sentences and ASL glosses. A Tree-Adjoining Grammar (TAG)
is a tree rewriting system [14], the primitive elements of which are elementary
trees (see Figure 2). In a Lexicalized TAG, these elementary trees are anchored
by lexical items, such as nouns and verbs [21]. The elementary trees also have
argument positions for the subjects and objects of verbs, adjectives, and other
predicates, which constrain the way they can be combined, and which determine
the predicate-argument structure of the input sentence. Elementary trees are
combined by the operations of substitution and adjunction, where substituting
elementary trees (such as the noun tree for ‘John’ in Figure 2) are attached at
the frontier nodes of other elementary trees (designated with |), and adjoining
elementary trees (such as the modifier tree for ‘quietly’) are attached at internal
nodes of other elementary trees by removing the part of the host tree below
the adjunction site and reattaching it at one of the frontier nodes of the adjoin-
ing tree (designated with %). A source-language sentence can be parsed using
these constrained operations in polynomial time. As the source-language sen-
tence is parsed, a target-language tree can be simultaneously assembled, using
Synchronous TAGs [21,20], by associating one or more target-language elemen-
tary trees with each source-language elementary tree, and associating the nodes
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Fig. 3. Untopicalized tree and topicalized tree for pronouns

at which subsequent substitutions or adjunctions can take place. For example,
the associated source and target trees in Figure 3, for the English and ASL trans-
lations of ‘like,” have links (denoted by subscripts) between the designated sites
for substitutions of noun trees (like ‘John’ in the previous example), which will
function as the subjects in each sentence. Recognizing a complete parse on the
source (English) side therefore means building a complete parse on the target
(ASL) side. Synchronous TAGs have been used for machine translation between
spoken languages [2] but this is the first application to a signed language.

The input sentence brings with it grammatical information such as sentence
types and morphological marks such as tense. This information is expressed in
ASL through non-manual signals which have to be incorporated into the target
derivation tree.

4.2 Grammar patterns

Although ASL seems to have a freer word order than English, Fisher [9]
claims that the underlying structure of ASL is based on subject-verb-object
(SVO) order and when other patterns are used, they need to be marked by
‘intonational breaks’ (e.g., pauses, head tilts, raising of eyebrows). Topicalized
ordering is preferred when the sentence has pronouns or when the discourse
referents are present.

Intransitive and transitive verbs can be represented either in SVO or in top-
icalized order; the choice of order depends heavily on the use of nouns and/or
pronouns. Translations (1) and (2) show the sentences in English and the re-
spective ASL glosses with the addition of an intonation break (/ib/) which is
mapped to the non-manual signs for topicalization in the animation system.
Figure 3 shows the tree mappings for these two pairs of sentences.

(1) John likes the girl
JOHN LIKE GIRL
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Fig. 4. Synchronous tree pairs for manual and nonmanual negation

(2) I like the girl
GIRL /intonation_break/ 1 LIKE

Predicative constructions in English which have nouns and adjectives as de-
scriptors are mapped to ASL sentences without verbs. The translation in (3) is
an example of this construction which also allows for topicalization.

(3) They are doctors
DOCTOR /intonation_break/ HE SHE

Negation in ASL may include the gloss NOT or simply movement of the
head side-to-side to express the idea of negation. It is usually accompanied by
a nonneutral facial expression, such as a frown. We use the top line notation
to specify the scope of the non-manual signs to be performed by the animation
system. The mapping between English and ASL shown in Figure 4 includes the
beginning (=3) and ending (¢=£) marks for these signs in the ASL tree. In a
sentence such as (4), the non-manual signs expressing negation are performed
throughout the VP, “NOT BUY DOG.”

(4) The woman is not buying a dog
neg
WOMAN NOT BUY DOG

A declarative sentence, a yes/no question and an imperative sentence may
all map to the same glosses in ASL. The translations in (5), (6), and (7) show
how these three sentence types are distinguished by the way they are presented
by the signer through the use of non-manual signals. The declarative sentence in
(5) is delivered at a normal rate and with a neutral face; the yes/no question in
(6) is delivered with a question sign at the end, which means it requires a head
tilt and eyebrows raised to convey the question idea and also the arms do not
go back to a neutral position immediately after; and the imperative sentence in
(7) is delivered with lower eyebrows and eyes slightly squinted, and the verb is
signed with more force, which we map using the Effort parameters. PAST is a
sign gesture with the hand above the shoulder.

(5) I left the cat in the house
PAST /intonation_break/ LEAVE CAT IN HOUSE
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Fig. 5. Synchronous tree pairs for “I teach you,” and “you teach me’

(6) Did you leave the cat in the house?

q
PAST /intonation_break/ LEAVE CAT IN HOUSE

(7) Leave the cat in the house
LEAVE(0,0.5,0.2,0.2) CAT IN HOUSE

There are different classes of verbs in ASL. One distinction is between nondi-
rectional and directional verbs. In the first case, the sign is always the same and
cannot be changed without altering its meaning. If a nondirectional verb is ac-
companied by pronouns, these need to be mapped explicitly and must be present
as glosses in ASL. Examples of these verbs include KNOW, FORGET, EAT, and
TRUST. For directional verbs, such as ASK, GIVE, WAIT, and TEACH, the start
and end points of the verb sign depend on the pronouns used (1st, 2nd or 3rd
person). For example, TEACH has a different orientation for You teach me (8)
than for I teach you (9). In this case, we map the pronouns to € (empty argu-
ments) and have features identifying their locations in space which are used as
start and end points for the verb sign. Other classes of verbs also exist, such
as location verbs, where only the direct object is referred to; we treat these the
same as directional verbs but with the start point in neutral position.

(8) I teach you (9) You teach me
1 TEACH2 2TEACH1

For multi-directional verbs such as teach, the translation must match the
start- and end-points of the sign for the verb with the locations of the signs



for the subject and object. This behavior, which closely resembles subject-verb
agreement in spoken languages such as English, is modeled using essentially the
same mechanism used for subject-verb agreement in existing grammars [13]. We
handle this using features in the paired grammar which coindex the location
of the verb’s subject and object signs with features on the verb sign, which
are interpreted as parameters for the start and end points of the sign in the
parameterized gesture system (Figure 5).

Fig. 6. An ASL Animation Example: “RECENTLY I-SICK NOW I-WELL”

Incorporation of number, size and shape, manner, and location, among oth-
ers, occurs frequently in ASL. These phenomena present problems for transla-
tion, since they are frequently dependent on the signer’s understanding of the
sentence.”> We use the Effort-Shape parameters discussed in (2.2) to handle in-
flections for temporal aspect, manner, and degree. The example translation in
(10) shows the mapping of the adverb slowly to the appropriate parameters that
modify the way the sign OPEN is performed.

(10) John opened the door slowly
JOHN OPEN(0,0,-0.2,0) DOOR

Conditional sentences are expressed in English by using the lexical item if.
In ASL one way to express a conditional sentence is by marking the condition

5 For example, in the signed version of the English sentence He picked up the dead
fish and threw it in the trash it is likely that the gloss FISH will be signed as far as
possible from the signer’s body.



as a question and the consequent as a statement. Examples of this can be seen
in (11) and (12).

(11) If it rains tomorrow, I will not go to the beach

q neg
TOMORROW RAIN ME NOT GO BEACH

(12) If it rains tomorrow, are you going to the beach?

q q
TOMORROW RAIN YOU GO BEACH

5 Sign Synthesizer

In most cases, the transitions between the signs should be smooth. A simple and
straightforward approach for the smoothness is to have the beginning and ending
of every sign performed in the same standard posture. While this approach
offers smooth continuous transitions, beginning and ending each sign in the same
‘neutral’ position is very unnatural. An awkward, computationally expensive
approach is to define transitions between every pair of possible motions. NYU’s
Improv project [19] uses a technique called motion blending to automatically
generate smooth transitions between isolated motions. This approach succeeds
in avoiding returning to a required ‘neutral’ pose, but it does not necessarily
guarantee natural and rational transitions.

We are using PaT-Nets (Parallel Transition Networks) to solve the motion
blending problems. A PaT-Net is a simultaneously executing finite state au-
tomata in which the nodes are associated with actions and connections between
the nodes are associated with transition conditions. PaT-Nets make it very easy
to wait on completion of actions before moving onto the next action, to execute
actions in parallel or in sequence, and to dynamically extend the action structure
by invoking other PaT-Nets from nodes of the current one [3].

To demonstrate the power of PaT-Nets and the integration of our TEAM sys-
tem, we create an ASL animation example with English input ”recently I was
sick but now I am well” (Figure 6). The animation was generated in real time.

6 Conclusion and Future Work

We have described a prototype machine translation system from English to
American Sign Language, taking into account not only linguistic but also vi-
sual and spatial information associated with ASL signs. Currently we focus on
translation from English to ASL, but translating the other way around from
ASL to English is an even more interesting challenge. If we can create an ASL
recognizer [29] and parser as we have for English, we would be able to trans-
late signed ASL to spoken English sentences and back again to allow real-time
interaction on the Internet.
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