

Predicting thoughts and actions

- > Cognitive models
- > Physical models

User Modeling

- Build a model of how a user works, then predict how she will interact with the interface.
- ➢ Goals (Salvendy, 1997):
 - 1. Predict performance of design alternatives
 - 2. Evaluate suitability of designs to support and enhance human abilities and limitations
 - 3. Generate design guidelines that enhance performance and overcome human limitations

Note: Not even a mockup is required

Differing Approaches

> Human as Information Processing machine

- * "Procedural" models
- Many subfamilies and related models
- Human as a biomechanical machine
- Human as a social actor
 - Situated action
 - Activity theory
 - Distributed cognition

Some Cognitive Models

- 1. Model Human Processor
- 2. GOMS
- 3. Production Systems
- 4. Grammars

1. Model Human Processor

> Card, Moran, & Newell (1983, 1986)

- "Procedural" models:
 - People learn to use products by generating rules for their use and "running" their <u>mental model</u> while interacting with system
- Components
 - Set of memories and processors
 - Set of "principles of operation"
 - ✤ Discrete, sequential model
 - Each stage has timing characteristics (add the stage times to get overall performance times)

MHP: Three Systems in Model

Perceptual, cognitive, motor systems

- Timing parameters for each stage/system
- * Cycle times (τ):
 - $\tau_p \approx 100 \text{ ms}$ ("middle man" values)
 - $\tau_c \approx 70 \text{ ms}$
 - τ_m ≈ 70 ms
- Perception & Cognition have memories
- Memory parameters
 - Code, decay time, capacity

MHP: Model and Parameters

Fall 2018

8

MHP: Principles of Operation

> Set up rules for how the components respond.

- Can be based on experimental findings about humans.
 - Recognize-act cycle, variable perceptual processor rate, encoding specificity, discrimination, variable cognitive processor rate, Fitts' law, Power law of practice, uncertainty, rationality, problem space

* Note: *caveat emptor*

Applying the MHP

Example: Designing menu displays

- *16 menu items in total
- Breadth (1x16) vs. Depth (4x4) ?

MHP: Calculations

Breadth (1x16):

 τ_{p} perceive item, transfer to WM

- τ_{c} retrieve meaning of item, transfer to WM
- τ_{c} Match code from displayed to needed item

 τ_{c} Decide on match

 τ_m Execute eye mvmt to (a) menu item number (go to step 6) or (b) to next item (go to step 1)

 τ_{p} Perceive menu item number, transfer to WM

 τ_{c} Decide on key

 τ_{m} Execute key response

Time = [((16+1)/2) (τ_p + 3 τ_c + τ_m)] + $\tau_p + \tau_c + \tau_m$

Time = 3470 msec

Serial terminating search over 16 items PSYCH / CS 6755

Depth (4x4):

Same as for breadth, but with 4 choices, and done up to four times (twice, on average):

Time = 2 x [((4+1)/2) (τ_p + 3 τ_c + τ_m)] + τ_p + τ_c + τ_m Time = 2380 msec

> Therefore, in this case, 4x4 menu is predicted to be faster than 1x16.

Fall 2018

Related Modeling Techniques

Many techniques fall within this "human as info processor" model

- Common thread hierarchical decomposition
 - Divide behaviors into smaller chunks
 - Questions:
 - What is unit chunk?
 - When to start/stop?

Goals, Operators, Methods, Selection Rules

Card, Moran, & Newell (1983)

Assumptions

- Interacting with system is problem solving
- Decompose into subproblems
- Determine goals to "attack" problem
- Know sequence of operations used to achieve the goals
- Timing values for each operation

GOMS: Example

Menu structure (breadth vs. depth, again)
 Breadth (1x16):

 Goal: perform command sequence
 Goal: perform unit task of the command
 Goal: determine which unit task to do
 Operator: Look at screen, determine next command
 Goal: Execute unit task
 Select: Which method to enter number of command
 e.g. IF item # between 1 & 9 THEN use 1-KEY METHOD
 Operator: Use 1-Key Method
 Operator: Verify Entry... etc.

Result: Average Number of Steps = 33

GOMS: Example, cont' d

- Depth (4x4):
- Similar steps, in slightly different order and looping conditions
 - Result: Average Number of Steps = 24
- > Comparison: Depth is ~25% faster in this case
 - ✤ Card et al. did not specify step length (in time)
 - Assume 100msec/step, then depth is 0.9 sec faster
 - Similar to Model Human Processor results

GOMS: Limitations

➤ GOMS is not so well suited for:

- Tasks where steps are not well understood
- Inexperienced users

≻Why?

GOMS: Application

>NYNEX telephone operation system

- GOMS analysis used to determine critical path, time to complete typical task
- Determined that new system would actually be slower
- Abandoned, saving millions of dollars

GOMS: Variants

Keystroke Level Model (KLM)

- Analyze only observable behaviors
 - Keystrokes, mouse movements
- Assume error-free performance
- Operators:
 - K: keystroke, mouse button push
 - P: point with pointing device
 - D: move mouse to draw line
 - H: move hands to keyboard or mouse
 - M: mental preparation for an operation
 - R: system response time

- > Breadth menu (1x16)
 - M: Search 16 items
 - 1 or 2 K: Enter 1 or 2-digit number
 - K: Press return key

```
Time=M + K(first digit) + 0.44K(second digit) +
```

K(Enter)

(Look up values, and when to apply "M" operator)

Time=1.35 + 0.20 + 0.44(0.20) + 0.20 = 1.84seconds

- Note: Many assumptions about typing proficiency, M's, etc.
- Also ignores most of the time spent determining which task to perform, and how to perform it.

Fall 2018

Example of KLM

- Depth menu (4x4)
 - M: Search 4 items
 - K: Enter 1-digit number (no M, since expert user)
 - ✤ K: Press return key

Time=M + K(Digit) + K(Enter)

Time=1.35 + 0.20 + 0.20 = 1.75 seconds

Compare the various models in terms of times and predictions:

 Vary in times, but not in performance predictions

3. Production Systems

>IF-THEN decision trees (Kieras & Polson, 1985)

- * e.g. Cognitive Complexity Theory
- Uses goal decomposition from GOMS and provides more predictive power
- Goal-like hierarchy expressed using if-then production rules
- Very long series of decisions
 - Note: In practice, very similar to NGOMSL
 - Bovair et al (1990) claim they are identical
 - NGOMSL model easier to develop
 - Production systems easier to program

4. Grammars

- To describe the interaction, a formalized set of productions rules (a language) can be assembled.
- "Grammar" defines what is a valid or correct sequence in the language.
- Reisner (1981) "Cognitive grammar" describes humancomputer interaction in Backus-Naur Form (BNF) like linguistics
- Used to determine the consistency of a system design

Task Action Grammars (TAG)

- > Payne & Green (1986, 1989)
- Concentrates on overall structure of language rather than separate rules
- Designed to predict relative <u>complexity</u> of designs
- Not for quantitative measures of performance or reaction times.
- Consistency & learnability determined by similarity of rules

Summary of Cognitive Models

1.Model Human Processor (MHP)

2.GOMS

- Basic model
- Keystroke-level models (KLM)
- NGOMSL
- **3.**Production systems
 - Cognitive Complexity Theory
- 4.Grammars

Modeling Problems

- Terminology example
 - Experts prefer command language
 - Infrequent novices prefer menus
 - What's "frequent", "novice"?
- > Dependent on "grain of analysis" used
 - Can break down getting a cup of coffee into 7, 20, or 50 tasks
 - That affects number of rules and their types
 - (Same issues as Task Analysis)

Modeling Problems (contd.)

Does not involve user per se

 Doesn't inform designer of what user wants

 Time-consuming and lengthy, (but...)
 One user, one computer issue

 (lack of social context)
 i.e., non-situated
 Can use Socially-Centered Design

Physical/Movement Models

Fitts' LawSimulations

≻Fitts' Law

- Models movement times for selection tasks
- Paul Fitts: war-time human factors pioneer

Basic idea: Movement time for a well-rehearsed selection task

- Increases as the distance to the target increases
- Decreases as the size of the target increases

Different devices/sizes have different movement times--use this in the design What do you do in 2D? Where can this be applied in interface design?

Extending to 2D, 3D

≻ What is W in 2D? In 3D?

> Larger movements?

Short, straight movements replaced by biomechanical arcs

Simulations

- Higher-level, view humans as components of a human-machine system
- E.g., MicroAnalysis and Design (maad.com)
 - Micro Saint any type of models!
 - WinCrew workload models
 - Supply Solver supply chain

e.g., Micro Saint Sim Tools

http://www.microsaintsharp.com

(Social) Context

- Human information processor models all involve unaided individual
- In reality, people work with other people and other artifacts
- Other models of human cognition
 - Situation action
 - Activity theory
 - Distributed cognition

Situated Action

> Studies situated activity or practice

- Activity grows out of the particulars of a situation
- Improvisation is important

Basic unit of analysis is "the activity of persons acting in a setting"

> Need 3/4 of a cup of cottage cheese

- ✤ Just has a 1-cup measuring cup available
- Person solves problem by
 - ✤ Measuring 1 cup
 - Pouring out into a circle
 - Divide into quadrants
 - Take away one quarter
- > One time solution to one time problem

Situated Action Principles

- Structuring of an activity grows out of immediacy of the situation
- People engage in opportunistic, flexible ways to solve problems
- NOT Formulaic plansNOT Rational problem solving

Unit of analysis is an activityComponents:

Activity Theory Principles

Key idea: Notion of *mediation* by artifacts (objects)

- > Our work is a computer-mediated activity
 - Starring role goes to activity
 - ✤ In "regular" HCI, stars are person and machine
- Context is not "out there". It is generated by people in activities

Distributed Cognition

Unit of analysis is cognitive system composed of individuals and the artifacts they use

Studies the coordination and cooperation between people and artifacts in a distributed process

Distributed Cog. Principles

>NOT Individual agents

Distributed collection of interacting people and artifacts

Functional system is what matters, not individual thoughts in people's heads

Simpler User Modeling

How do attributes of users (in their context) influence the design of user interfaces?

Are there some design guidelines that we can derive from different attributes?

User Profiles

>Attributes:

* attitude, motivation, reading level, typing skill, education, system experience, task experience, computer literacy, frequency of use, training, color-blindness, handedness, gender,...

>Novice, intermediate, expert

Motivation

≻ <u>User</u>

- Low motivation, discretionary use
- Low motivation, mandatory
- High motivation, due to fear
- High motivation, due to interest

- Design goal
- ----- * Control, power
 - Ease of learning, robustness, control
 - Power, ease of use

Knowledge & Experience

Experience

- ➢ task system
 - Iowlow
 - high high
 - Iowhigh
 - ✤ high low

- Design goals
 - Many syntactic and semantic prompts
 - Efficient commands, concise syntax
 - Semantic help facilities
 - Lots of syntactic prompting

Job & Task Implications

Frequency of use

- High Ease of use
- Low Ease of learning & remembering
- Task implications
 - High Ease of use
 - Low Ease of learning
- System use
 - Mandatory Ease of using
 - Discretionary Ease of learning

Upcoming

➢ Evaluation