
Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

WHITHER AND WHEREFORE THE AUDITORY GRAPH?
ABSTRACTIONS & ÆSTHETICS IN AUDITORY AND SONIFIED GRAPHS

Paul Vickers

Interactivity Research Group
School of Informatics, Engineering, & Technology

Northumbria University
Newcastle upon Tyne

United Kingdom
paul.vickers@unn.ac.uk

ABSTRACT

A good deal of attention has been paid by the auditory display
community to the sonification of graphical data and the termau-
ditory graphhas been used to describe this class of auditory map-
pings. We contend that definitions have become blurred leading
to first-order sonifications of functions and data being treated as
synonymous with the second- and higher-order mappings obtained
whengraphsof those functions and data are themselves sonified.
This paper looks at the different types of sonifications currently
known collectively asauditory graphsand, based on this analysis,
proposes a purposeful distinction to be drawn betweenauditory
graphsandsonified graphs. An example is taken from the domain
of computer programming to further illustrate the argument.

1. INTRODUCTION: WHAT GRAPH?

Since the emergence of sonification techniques for mapping data
to sound, there has been much effort directed to representing
graphical data using sound. For example, Lunney and Morrison
[1] showed how chemical spectra could be easily communicated
to blind students using simple pitch mappings. Rigas and Alty
[2] demonstrated how relatively complex two-dimensional shapes
could be successfully communicated to blind listeners using musi-
cal mappings alone.

More recently, researchers have begun to produce sonifica-
tion toolkits that make the job of mapping data to sound relatively
easy. Examples include Lodha’sListenandMusesystems [3, 4],
Joseph and Lodha’sMusart [5] and Walker and Cothran’sSoni-
fication Sandbox[6]. The Sonification Sandboxin particular is
designed specifically as a tool for creating auditory graphs. In the
sections that follow we explore various meanings of the term ‘au-
ditory graph’ and how different interpretations of the term may be
leading us to generate inappropriate or unintended sonifications.

1.1. Graphs of functions & graphs of data

At school we were taught how to graph linear and exponential
functions because cartesian representations allow the overall char-
acteristics of and differences between functions to be seen very
quickly. Consider the two continuous functionsy = x andy = x2

whose graphs (Figures 1(a) & 1(b)) clearly show their different
natures. Functions with more terms and exponential powers have

even more interesting graphs, and these can help the learner to un-
derstand the behaviour of functions.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

y = x

(a) y = x, 0 ≤ x ≤ 6

0

5

10

15

20

25

30

35

40

-6 -4 -2 0 2 4 6

y = x2

(b) y = x2,−6 ≤ x ≤ 6

Figure 1: Graphs of two continuous functions

In addition to plotting functions, graphs are also used (espe-
cially in the business world) to reveal features of datasets (e.g. the
volume of sales in each of twelve monthly periods); data points are
plotted on a graph to allow inspection and comparison of the data;
indeed, the charting features of modern spreadsheet packages are
designed specifically for this purpose.

1.2. Graphs as abstractions

Because graphs are so widely used it was natural that the audi-
tory display community look for ways to map their contents to
sound. This, it was claimed, would provide better analytical tools
as well as making graphs accessible to those with visual impair-
ments. A graph, though, is just an abstraction of its underlying
data. The two graphs in Figure 1 are not the functionsy = x and
y = x2 themselves but external visual representations (and non-
isomorphic ones at that). As they are abstractions, by their nature
graphs are lossy. When we use sonification techniques to map a
graph to sound we are creating a second-order abstraction (or meta
abstraction) of the function and thereby potentially increasing the
information loss as we move further away from the underlying data
or function. When we take a tool such as theSonification Sandbox
to create a mapping of a graph’s domain to an auditory range we
are moving one step further away from the function the graph rep-
resents. Of course, the designers of theSonification Sandboxstate
that the tool’s purpose is to create direct (first-order) sonifications

ICAD05-1



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

of data, but the fact that the sonification is played as an accom-
paniment to an animated display of a two-dimensional graphical
plot of the data tends to reinforce the view that the auditory graph
in question is an auditory representation of thevisual graph (see
Figure 2). Thus, the very tools we use are blurring the distinction
between first- and higher-order sonifications.

Figure 2: The continuous functiony = x sonified using theSoni-
fication Sandbox

The auditory graphs generated by existing tools tend to pro-
duce sonifications that map the contour of the visual graph to
sound. This is fine for functions with one term, such asy = x
andy = x2, but what about those with more terms? Take the
generalised quadratic functionf(x) = ax2 + bx + c or a sinu-
soidal function such asf(t) = t.sin(ωt). A sonification of the
corresponding graphs using a tool such as theSonification Sand-
boxonly plays the values ofy for each value in a specified interval
of x: what about the other terms and coefficients? We could, of
course, direct theSonification Sandboxto map the constantsa, b,
andc to sound (though this would not be very instructive), but what
about the variable termsax2 andbx? By mappingy to the audi-
tory domain we are getting an auditory graph of the entire function
where it may be instructive to hear the individual terms. Again, we
could get round this by creating more columns of data in theSonifi-
cation Sandboxto representax2 andbx as terms in their own right
and play all the sonfications in parallel, but this seems like a lot of
work. What is needed is a tool that takes a function or a dataset
and allows the properties of the data to be explored sonically in
a more natural way (that is, one that is more consonant with the
underlying data or function).

2. DESIGN ÆSTHETICS: THE CURSE OF MIDI

Sonification toolkits generally use MIDI as the medium for turn-
ing data into sound. A fundamental restriction of MIDI is that by
quantizing the data to fit the 128 available MIDI pitches it effec-
tively turns continuous data or functions into discrete forms. What
does this do to the perception of the graph and the listener’s under-
standing of it? Take the continuous functiony = x whose graph
is shown in Figure 1(a) for the interval0 ≤ x ≤ 6. This is a sim-
plestraight linefunction1, and we can use theSonification Sound-

1Note the way functions are known by the shape of their graph.

box to generate an auditory graph (see Figure 2). TheSonification
Soundboxworks with tabular data, and so the functiony = x
must be mapped from the continuous to the discrete domain to
give the data pairs{{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}}. These
data pairs are then transformed via a mapping function inside the
Sandboxinto MIDI note-on/note-off events which are in turn ex-
ecuted by a software synthesiser. The output (see Figure 2) will
be heard as a series of six rising pitch intervals (the exact inter-
val between pitches is not specified but is itself a function of the
number of data points in the table and the minimum and maxi-
mum pitches that have been set by the user). Using techniques like
this Walker and Mauney [7], Brown and Brewster [8], and others
have demonstrated that such auditory mappings can be understood
by listeners and different graphs discriminated by their auditory
signatures. But consider what has happened. We began with a
function, y = x, and carried out a transformation that allows a
specified interval ofx to be represented in discrete tabular form
(a first-order abstraction which we may callA). The discrete data
points are themselves quantized to MIDI note numbers (giving the
second-order abstractionA′) which are in turn quantized to actual
audible frequencies (A′′). Finally, the MIDI note numbers them-
selves are a function of the data and the pitch range (A′′′). This
means that the auditory graph is as much as a fourth-order abstrac-
tion (a meta-meta-meta-abstraction) of the original function.

The quantization imposed by the MIDI system means that, in
the case ofy = x, the auditory representation is of astep func-
tion rather than a continuous function. Thus the functiony = x
(Figure 1(a)) is rendered bySonification Sandbox(Figure 2) as an
auditory mapping of the greatest integer functiony = [x] (Figure
3). The quantisation effect is shown more clearly in Figure 4 in

0

1

2

3

4

5

0 1 2 3 4 5 6

y = [x]

Figure 3: The Greatest Integer function:y = [x]

which the functiony = x2 has been converted to discrete tabular
data and sonified using theSonification Sandbox. The quantisation
steps can be masked somewhat by using theSandbox’s interpola-
tion feature to produce a smoothglissandoeffect between the dis-
crete MIDI pitches. However, the limitations of MIDI’s resolution,
and the requirement to trigger specific Note-on/Note-off events for
each data point tone, means that the quantisation steps can still be
clearly heard. Careful selection of timbre ameliorates this effect
still further, but does not remove the problem altogether.

Whilst MIDI makes the building of sonification tools easier, it
does not lend itself well to rich auditory displays. It is, for the most
part, tied to the twelve-tone octave and does not contain the vocab-
ulary necessary for detailed expressive control of auditory events.

ICAD05-2



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

The æsthetic of MIDI lies predominantly in the keyboard-based
synthesiser technology of the 1980s and so its expressive controls
are modelled around those found on keyboard-based instruments2.
Tools such asMax/MSP3, Pure Data4 andSuperCollider5 provide
much more flexible environments that open up the æsthetic possi-
bilities of sonification tools. There is no reason now for sonifica-
tions to confine themselves to keyboard-instrument-based tonal (or
even atonal) frameworks if the æsthetics of other auditory forms
and languages lend themselves better to the task in hand. Whilst
there are difficulties associated with straying too far from the lis-
tener’s own frame of reference [9] there is a need to move beyond
the strictures imposed by the MIDI protocols.

Figure 4: The discrete form of the continuous functiony = x2

sonified using theSonification Sandbox

3. WHEREFORE THE AUDITORY GRAPH?

Perhaps the termauditory graphis itself misleading. The exam-
ples above have interpreted the term as meaning an auditory rep-
resentation of a graph. Indeed, Brown and Brewster [8] used the
term sonified line graphexplicitly to mean a sonification of a vi-
sual graph. However, this interpretation does not always hold. The
Sonification Sandboxcreates sonifications of tabular data. As long
as these data are not themselves abstractions of something else,
then the resultant sonification is a first-order external auditory rep-
resentation of the data in the same way that a graph or chart is a
first-order visual representation of the data. In this sense the term
auditory graphis a metaphor that attempts to show how the soni-
fication is like a graph only rendered in sound rather than graph-
ically. Here, the auditory graph isnot a mapping of the graph’s
domain onto an auditory range but a mapping of the function or
data domain to an auditory range. However, the blurring of defi-
nitions is compounded when theSandboxplays the sonification in
sync with an annotated graph of the data whosex axis is traversed
by a cursor in time with the sonification (see Figure 2).

2We are aware of MIDI breath controllers and the like, but the resolu-
tion of the MIDI language severely restricts their usefulness.

3see http://www.cycling74.com/products/maxmsp.html
4see http://www.puredata.org
5see http://www.audiosynth.com

3.1. Auditory graphs and sonified graphs

It would be helpful to have different terms for these different
types of sonification. Therefore, we propose that the termaudi-
tory graphbe reserved for those first-order sonifications of data
and functions that are thought of as being analogous to a visual
graph. When a graph itself is mapped to sound (as was the case in
Brown and Brewster’s work [8]) then, to borrow from Brown and
Brewster’s terminology, we are dealing with asonified graph—see
Figure 5.

→ → →
 

(a)

(b)

Figure 5: Two different meanings of the termauditory graph. (a)
A real auditory graph: Mapping a function to sound. (b) Sonified
graph: Mapping agraphto sound

4. EXAMPLE FROM THE PROGRAMMING DOMAIN

Graphs are common in the world of programming. Consider
Figure 6 which shows the structure of an algorithm for handling
a library book using Jackson’s tree notation [10]. The tree
diagram is one of many external visual representations based upon
graph-theoretic foundations that are used in programming. Any

Library book

Catalogue Shelve Life

Borrow Return

Loan

1

2 3 4

5

6 7

Figure 6: Tree graph for library book

Jackson tree diagram can be transformed into a state-transition
diagram (finite state machine). Figure 7 shows a state transition
diagram transformation of the tree diagram from Figure 6. Both
notations in Figures 6 and 7 are graphs, but they emphasise
different aspects of the underlying algorithm. Figure 6 emphasises
the algorithm’s structure whilst Figure 7 focuses on the events that

ICAD05-3



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

cause change in the system. If the compound nodes on the tree in
Figure 7 are broken into two: ‘b’ for start and ‘e’ for end, then we
can also derive a directed graph with ten edges and ten vertices:
V := {1b, 1e, 2, 3, 4b, 4e, 5b, 5e, 6, 7}
E := {{1b, 2}, {2, 3}, {3, 4b}, {4b, 5b}, {5b, 6}, {6, 7}, {7, 5e},
{5e, 4b}, {4b, 4e}, {4e, 1e}}
which can be represented diagramatically as Figure 8.
Taken together, Figures 6, 7, and 8 all provide different first-order

Cataloguing On shelf On loan

Shelve Borrow

Return

Catalogue

Figure 7: Finite state machine for library book

1b 2 3

4b

4e

5b 6

7

5e

1e

False

True

Figure 8: Directed graph for library book

representations of a shared underlying algorithm allowing insights
into its structure and behaviour. Vickers and Alty [11, 12, 13]
demonstrated that the first-order sonifications (orauralisations) of
programs generated by theirCAITLIN system could be used in
the identification and location of bugs. Using the above definitions
of auditory graphandsonified graph, the auralisations generated
by CAITLIN are first-order auditory graphs, just as Figures
6, 7, and 8 are all first-order visual graphs. In an earlier work
Vickers [14] commented that the auralisations were like auditory
tree diagrams, but close inspection shows that this is more of an
analogy than anything else. The auralisations were sonifications
of the run-time execution path of the program and did, indeed,
contain structural information like a tree diagram, but as they were
not, themselves, sonifications of tree diagrams, the analogy broke
down beyond a certain level of abstraction.

The CAITLIN program auralisation system, then, generated
true auditory graphs which, being first-order external represen-
tations of the underlying program, sit alongside the external vi-
sual representations (trees, finite state machines, directed graphs,
etc) to provide an audio-visual tool set for the exploration of pro-
grams. Each tool in the set provides a different view onto the pro-
gram. However, sonified graphs of the trees, finite state machines,
and directed graphs, would provide auditory views onto thevisual
graphs. The sonified graphs would thus be first-order representa-
tions of the visual graphs and second-order representations of the
underlying program.

5. WHITHER THE AUDITORY GRAPH?

How, then, might the community progress from the ‘simple’6 map-
pings employed in the sonification of visual graphs to the richer
mappings needed to allow fuller exploration of functions and data
sets? Some lessons may, perhaps, be learnt from program aural-
isation work: auralisations can render information that is harder
to spot using visual representation systems (e.g. message pass-
ing between parallel threads). Another angle of attack may come
from the work of Hermann and Ritter [15] who proposed treating
a dataset as a virtual physical entity from which a physical model
is derived. The model is then excited to produce sound (just like
physical models of musical instruments). This approach allows a
form of data mining to be carried out on the dataset and reveals
different features of the data sonically.

We suggest that the future of auditory graphs may lie in these
kinds of approaches. Rather than simply trying to create auditory
equivalents of visual graphs, treating datasets and functions holis-
tically will enable auditory mappings thatnaturally correspond to
their features and characteristics. If a function is treated as the
specification for a physical model then much richer sonifications
could be derived than the simple transliteration of a function’s
graph contour into sound allows. Like theCAITLIN program au-
ralisations the auditory graph then becomes a true external repre-
sentation in its own right giving a different perspective on its un-
derlying data and complementing rather than reproducing visual
graphs. Sonified graphs can be retained as alternatives to visual
graphs but in the full knowledge that they are not first-order soni-
fications.

6. CONCLUSIONS

The auditory display community should be careful to distinguish
betweenauditory graphs(first-order sonifications of data) and
sonified graphs(sonifications of graphs). If we go down the road
of focusing our attention on sonified graphs we may miss out on
the full potential of auditory display. Back in 1990 Hotchkiss and
Wampler [16] wrote:

Humans have been so accustomed to looking at
graphs of functions that a great richness of under-
standing has been sorely overlooked.

Having concentrated much effort on sonifying graphs, the auditory
display community should now focus attention on the mappings
that will create true auditory graphs that enable data and functions

6Simple in the sense that a good sonified graph should aim to be, in
information terms at least, as close to an isomorphic mapping of the vi-
sual graph it portrays as possible. A true sonified graph should not aim to
present more information than is present in the visual graph it represents.

ICAD05-4



Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

to be explored in the ways Hotchkiss and Wampler talked about.
Of couse, the sonified graph has its place, but by clearly marking
the difference betweenauditoryandsonifiedgraphs we can begin
to exploit the auditory channel more effectively.

7. REFERENCES

[1] D Lunney and R C Morrison, “Auditory presentation of
experimental data,” inExtracting Meaning from Complex
Data: Processing, Display and Interaction, E J Farrell, Ed.,
vol. 1259, pp. 140–146. 1990.

[2] Dimitrios I Rigas and James L Alty, “The use of music in a
graphical interface for the visually impaired,” inInteract ’97,
S. Howard, J. Hammond, and G. Lindegaard, Eds., Sydney,
1997, pp. 228–235, Chapman & Hall, London.

[3] C M Wilson and Suresh K Lodha, “Listen: A data sonifica-
tion toolkit,” in ICAD ’96 3rd International Conference on
Auditory Display, S Frysinger, Ed., Palo Alto, USA, 1996.

[4] Suresh K Lodha, J Beahan, T Heppe, Abigail J Joseph, and
B Zne-Ulman, “Muse: A musical data sonificaton toolkit,” in
ICAD ’97 4th International Conference on Auditory Display,
Palo Alto, USA, 1997.

[5] Abigail J Joseph and Suresh K Lodha, “Musart: Musical
audio transfer function real-time toolkit,” inICAD ’02 - 2002
International Conference on Auditory Display, Kyoto, Japan,
2002.

[6] Bruce N Walker and Joshua T Cothran, “Sonification Sand-
box: A graphical toolkit for auditory graphs,” inICAD ’03
9th International Conference on Auditory Display, Boston,
MA, USA, July 2003, pp. 161–163.

[7] Bruce N Walker and Lisa M Mauney, “Individual differ-
ences, cognitive abilities, and the interpretation of auditory
graphs,” inICAD ’04 The 10th Meeting of the International
Conference on Auditory Display, Steven Barrass and Paul
Vickers, Eds., Sydney, Australia, July 6-9 2004.

[8] L M Brown and S A Brewster, “Drawing by ear: Interpreting
sonified line graphs,” inICAD ’03 9th International Confer-
ence on Auditory Display, Boston, MA, USA, July 2003.

[9] Paul Vickers and James L Alty, “The well-tempered com-
piler: The aesthetics of program auralization,” inAesthetic
Computing, Paul Fishwick, Ed., chapter 11, p. in press. MIT
Press, Boston, MA, 2005.

[10] M A Jackson, Principles of Program Design, Lon-
don:Academic Press, 1975.

[11] Paul Vickers and James L Alty, “Using music to commu-
nicate computing information,”Interacting with Computers,
vol. 14, no. 5, pp. 435–456, 2002.

[12] Paul Vickers and James L Alty, “Musical program aurali-
sation: A structured approach to motif design,”Interacting
with Computers, vol. 14, no. 5, pp. 457–485, 2002.

[13] Paul Vickers and James L Alty, “When bugs sing,”Interact-
ing with Computers, vol. 14, no. 6, pp. 793–819, 2002.

[14] Paul Vickers, CAITLIN: Implementation of a Musical Pro-
gram Auralisation System to Study the Effects on Debugging
Tasks as Performed by Novice Pascal Programmers, Ph.d.
thesis, Loughborough University, Loughborough, Leicester-
shire, September 1999.

[15] Thomas Hermann and Helge Ritter, “Listen to your data:
Model-based sonification for data analysis,” inAdvances
in intelligent computing and multimedia systems, Baden-
Baden, Germany, 1999, pp. 189–194, Int. Inst. for Advanced
Studies in System research and cybernetics.

[16] Robert S Hotchkiss and Cheryl L Wampler, “The auditorial-
ization of scientific information,” inSupercomputing. 1991,
pp. 453–461, ACM Press.

ICAD05-5


