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ABSTRACT

This paper will describe an issue that arose in the implementation
of graph sonification in an accessible mathematics product devel-
oped by the NASA Learning Technologies team at the Johnson
Space Center in Houston Texas. The software provides text de-
scriptions and audible displays of 2-dimensional graphs of equa-
tions, raw data, or simulations, and these audible displays make
use of pitch to indicate the height component(s) of the curve. It
is therefore important for us to provide the clearest possible pitch
cue over a wide (4 octave) spectrum. One significant barrier to
use of a relatively wide frequency range is the fact that pure tones
are attenuated significantly in the lower frequencies by inexpen-
sive sound systems common on personal computers. In this paper,
we describe several approaches to the problem of choosing wave-
forms which clearly communicate pitch while remaining audible
at low frequencies. We end by describing our compromise solu-
tion and by offering researchers an applet-based tool for further
experimentation.

1. INTRODUCTION

The anatomy of the audible display for many applications which
use sound to represent visual information [1], [2] and MathTrax
[3], is based on the conventional ”tone graph” wherein height (or
heights) are indicated by pitch and left-right position is indicated
by time and stereo panning. In the case of MathTrax, the visible
display is swept left to right over time. A visible vertical bar tracks
across the screen as the reference point moves from left to right.
Where the bar touches the graph (always at most a single touch
for functions, multiple touches for graphs with multiple branches),
one or more tones is generated, and the pitch of the tone indicates
the distance of the touch above or below the center of the screen.
We provide a review capability to allow the user to interactively
explore the graph by moving the reference bar left or right with
keyboard commands. There is a window that displays numeri-
cal values which can be reviewed at any time, thus the interactive
mode allows the user to find an area of interest by exploring with
ears and fingers, and then to read off the particulars from the data
window.

A design consideration in any such scheme should be to pro-
vide a clear pitch clue over a range of frequencies necessary to
convey the dynamic range of the data in question. The frequency
range of human hearing was documented and quantified as the

classical Fletcher-Munson loudness curves, [4] which are rela-
tively flat over a usefully wide range; however, the response of
inexpensive speakers or headphones of the type likely to be used
is in general, non-linear, and unpredictable, thus attempts to com-
pensate by simply adjusting power as a function of frequency are
not likely to succeed. We explore the influence of the shape of the
fundamental periodic waveform on perceived volume and pitch,
through harmonic analysis and experimentation.

Theoretically, we know that deviation from a pure sine wave at
the fundamental frequency necessarily introduces harmonic multi-
ples of the fundamental. As we will see, it is often much easier for
speakers to radiate low frequencies when the fundamental wave-
form contains some sharp edges; however, the question is how to
introduce roughness into the fundamental without disturbing the
listeners’ perception of the fundamental pitch with extraneous har-
monics. In the end, this is a complicated question which suggests
an experimental approach, and to this end, we provide an applet
[5]

1.1. Pitch and Frequency

The ear registers frequency in a complicated way. The sensation of
pitch can register tiny changes in frequency, however the ability to
determine absolute frequency – perfect pitch – is rare. We register
changes in frequency on a logarithmic scale, thus we associate an
exponential mapping of pitch to frequency given by the equation

f = f02
p (1)

where f is the frequency in Hertz, and p is the number of octaves
away from a reference pitch f0.

There is a tendency to identify tones which are a whole num-
ber of octaves apart, and this partial wrapping effect is the basis
of the famous Shepard tone acoustical illusion as well as many
others. For further discussion, of acoustical illusions see [6]

1.2. The Problem

In our first naive attempt to produce an audible graph, we used
a simple sine wave as the tone used to indicate the height of the
graph above a reference line. We chose an interval from 110 Hz to
1760 Hz, musically, the four octave range centered at the A above
middle C. In this range of frequencies, the ear has excellent sensi-
tivity to pitch; however, the optimum region for volume sensitivity
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is more in the 3 KHz range. Even more pronounced than the ear’s
typical loss of sensitivity and perceived drop in volume for signals
below 200Hz is the extreme attenuation of the acoustical power ra-
diated at low frequencies by speakers typically found in personal
computers. We offer a brief ”back of the envelope” analysis to
describe this effect.

Imagine that we wish to play a periodic signal s(t) given by

s(t) = aG(ωt) (2)

where a is the amplitude, G is a periodic function with period
equal to 2π, and ω is the radian frequency. The simplest case is
that of a pure sine wave, i.e. G(t) = sin(t). The frequency N in
Hertz is given by

N =
ω

2π
(3)

It is simple to calculate the power Ps in the signal by averaging
the square of s over a suitably large interval of time.

Ps = limT→∞

R

T

0 s2(τ)dτ

T
= limT→∞

R

T

0 a2G2(ωτ)dτ

T
=

limT→∞ a2 T

R 2π
0 G

2(τ)dτ

2π
+ρ(T )

T
=

a2
R 2π

0 G2(τ)dτ

2π
= a2ε0

(4)

where ρ is some bounded periodic function and ε0 is the average
of the square of G over a single period – the energy of the funda-
mental waveform. Note that the power of the signal is independent
of the frequency ω.

1.3. Behavior of a Typical Speaker

We can use some simple physics to estimate the work done on the
air by the speaker, and thus derive the radiated power. For a flat
object (such as a speaker cone) moving through air, the drag force
on the cone is proportional to the square of its velocity through the
air. The work done through an infinitesimal distance dx by a force
F is given by

dW = Fdx (5)

and thus the power Pr radiated by the vibrating cone is given by

Pr = lim
T→∞

R T

0
|F (τ )v(τ )|dτ

T
= lim

T→∞

R T

0
|κv3(τ )|dτ

T
(6)

where κ is the constant of proportionality relating drag force to the
square of the velocity. Note that we insert absolute values because
we dissipate energy independent of whether the cone is moving
forward or backward.

If we make the assumption that the displacement of the cone
d(t) at a given frequency ω is proportional to the incoming signal,
then we have

d(t) = α(ω)G(ωt) (7)

where α(ω) is the amplitude of the mechanical vibration of the
speaker cone at frequency ω and G is the basic waveform from 2.
We can differentiate 7 to obtain the velocity v(t) as

v(t) =
d

dt
α(ω)G(ωt) = ωα(ω)G′(ωt) (8)

and combining with 6 we obtain

Pr = limT→∞

R

T

0 κα3(ω)ω3|G′(ωτ)|3dτ

T
=

κα3(ω)ω2
R 2π

0 |G′(τ)|3dτ

2π
=

α3(ω)ω2ε1

(9)

Where ε1 is the frequency-independent constant κ
R 2π

0 |G′(τ)|3dτ

2π
.

Designers of audio equipment usually design speakers to ex-
hibit a ”flat” response curve in order to faithfully reproduce a sound
corresponding to their input signal. If we compare Ps and Pr as
described by 4 and 9, then we can see how the amplitude of cone
displacement α must vary with frequency ω in order to maintain a
flat response curve. If we set Pr = K0Ps, then we get

α
3(ω)ω2

ε1 = K0ε0a
2 (10)

therefore
α(ω) = K1ω

− 2
3 (11)

where we absorb all of the frequency-independent factors into a
single constant K1. Keeping the frequency response flat in a sin-
gle speaker would force the allowable amplitude of the cone vi-
bration to expand without bound for low frequencies, and in fact,
this effect is well known to anyone who has ruined a loud speaker
by driving it with bass boosted beyond the design limits of the
speaker. Typical PC speakers have a very small maximum dis-
placement and thus effectively cut off frequencies which are still
well within the usable audio spectrum. We can estimate how this
works by revisiting 10, replacing α(ω) with α0 and K0 with an
attenuation function K(ω) and write

K(ω) =
ε1α

3
0ω

2

a2ε0
= K2ω

2 (12)

If we identify the frequency ω0 at which the speaker achieves its
maximum displacement α0, and the corresponding pitch p0, then
we observe that the decibel attenuation imposed by the speaker for
frequencies below ω0 is given by

δ(p) = 10 log10

“

K(ω)
K(ω0)

”

=

10 log10

“

ω2

ω2
0

”

= 20 log10(2
p) =

20 log10(2)p

(13)

where δ(p) is the number of decibels of attenuation relative to
the frequency ω0 and p is the relative pitch in octaves below the
pitch p0 corresponding to ω0. Note that 13 indicates that the per-
ceived drop in volume will be a linear function of pitch, and the
constant of proportionality 20log10(2) is approximately equal to
6.0206. This means that you lose a little over 6 db’s of volume
for every octave below ω0. This ”back-of-the-envelope” analysis
ignores some important factors which actually cause the drop-off
to be even steeper. One assumption was that the motion of the
speaker cone will remain a linear multiple of the original signal
for frequencies below ω0 when in reality, the tops and bottoms
of the waveforms will be flattened which results in less transmis-
sion of energy to the surrounding air. It is also clear that sim-
ple power compensation will fail because the attenuation depends
on the physical characteristics of the speaker, thus pumping more
power in at low frequencies will only produce a distorted wave-
form and will be dissipated as heat rather than radiated as sound.

Despite this well known analysis, this rapid attenuation at low
frequencies is somewhat counterintuitive. We are used to hearing
sounds such as male voices or a low note from a trombone or tuba
rendered rather faithfully through small speakers. One reason for
this is that the foregoing analysis does not model power transmit-
ted by discontinuities in the signal. We close this section with a
quick look at the special case of a square wave. Define the func-
tion H(t) as follows:
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Figure 1: Power Dissipated by a Square Wave

H(t) = 1 if
»

t

π

–

is even and 0 otherwise (14)

where [x] indicates the greatest integer less than or equal to x. The
expression for radiated power derived in the linear case in 9 indi-
cates a dependence on the cube of the derivative of the underlying
function, in this case H . However, H is discontinuous, and thus
technically, has no derivative at integral multiples of π, and it’s
derivative is 0 elsewhere. What will actually happen is that the
signal will not really change instantaneously, nor will the cone po-
sition, but these electromechanical systems will react as quickly as
they can, moving from the negative extreme −α0 to the positive
α0. The magnitude of the velocity of the cone |v| will therefore
describe a sequence of pulses as shown in 1, and since the height
and width of these pulses are determined by the square wave re-
sponse of the electronics and speakers, they do not depend on the
frequency. The only dependence on frequency will be the spac-
ing of the pulses which will determine the average radiated power.
Note that we are merely assuming loudness to be correlated with
average power. If we consider peak power, then the presence of
|v|3 in 6 suggests that peak power decays with the cube of ω in
the smooth case; it is independent of ω in the discontinuous case.

2. WAVEFORMS

We now consider several simple waveforms and analyze their be-
havior as pitch cues. The easiest place to start is the square wave
shown in 2. Experimentation with this waveform through tiny
laptop speakers lends credence to the theory that perceived loud-
ness is well correlated to peak as opposed to average power. The
volume of the tone holds up exceptionally well at low frequencies,
probably because the spectrum being registered by the ear has lit-
tle to do with the fundamental frequency in the far low range, The
perception is more like a series of clicks than an actual tone. Un-
fortunately, this frequency corruption pervades the whole usable
range. The effect is like trying to sense the pitch of a basketball
halftime buzzer. To better understand, consider the harmonic se-
ries for H . Since H is an odd function, i.e. H(t) = −H(−t), we
can write H as a sine series as follows:

H(t) =
∞

X

n=1

bn sin(nt) (15)

Figure 2: Square Wave

where

bn =
1

π

Z 2π

0

H(t) sin(nt)dt =
4

nπ
for odd n and 0 otherwise

(16)
or

H(t) =
4

π

∞
X

n=0

1

2n + 1
sin(2n + 1)t (17)

The most noticeable feature of this expansion is that there is
exactly one harmonic that is an octave of the fundamental fre-
quency, namely, the fundamental itself. Also, the harmonics decay
quite slowly as a function of n, and thus 3, 5 and 7 are clearly
audible as ”ringy” overtones. We will later use an applet to illus-
trate this as well as a surprising octave artifact which suggests that
sensation of pitch may have more to do with counting than it does
with harmonic analysis.

Now consider the sawtooth waveform W shown in 3 given by

W (t) = 2

„

t − π

2π
−

»

t − π

2π

–«

− 1 (18)

where [x] indicates the largest whole number less than or equal to
x.

It can be shown that W can be represented as the following
sine series

W (t) =
2

π

∞
X

n=1

(−1)n−1

n
sin(nt) (19)

Clearly, W contains more octave harmonics of the fundamen-
tal than does H; however, it is a remarkable fact that the total
power of all octave harmonics is the same fraction of total power
in both series. To show this, we can easily determine the funda-
mental octave power in H because there is only a single harmonic,
namely the fundamental, which is an octave of the fundamental,
consequently the fundamental octave power for H is found by in-
tegrating one half the square of the coefficient of sin t from 0 to
2π or

PoH = 2π
1

2

16

π2
=

16

π
(20)

The total power in H can be found by simply integrating the square
of H (or 1) over the interval from 0 to 2π, thus

PH = 2π (21)

and the fraction FoH = PoH

PH
is given by

FoH =
8

π2
(22)
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Figure 3: Sawtooth wave
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Figure 4: Triangular Waveform

Since W has infinitely many harmonics which are octaves of
the fundamental, to find the fundamental octave power of W PoW ,
we must sum a geometric series consisting of the squares of the
coefficients for n a power of 2 as follows.

PoW = 2π
1

2

4

π2

∞
X

j=0

2−2j =
16

3π
(23)

As before with H , we determine the total power in W by integrat-
ing its square from 0 to 2π

PW =

Z 2π

0

W
2(t)dt =

2

3
π (24)

thus the fraction FoW = PoW

Pw
is given by

FoW =
16
3π
2
3
π

=
8

π2
(25)

which is identical to 22.
For the sake of completeness and comparison, we provide the

Fourier expansion of the triangular form given by

T (t) = H(t)

„

1 − 2|
t

π
−

»

t

π

–

−
1

2
|

«

(26)

The Fourier coefficients of T are given by

T (t) =
8

π2

∞
X

n=0

(−1)n sin(2(n + 1)t)

(2n + 1)2
(27)

Due to the continuity of T , the coefficients decay as 1
n2 , and

the tone has a correspondingly smoother sound than H(t) or W (t).

Although it does not survive at low frequencies as well as the
square or saw tooth waves, the triangular waveform remains clearly
audible (on laptop speakers) below 200Hz where the pure sine es-
sentially disappears.

3. EXPERIMENTS

The foregoing analysis suggests the complexity of the problem and
the need for a way to experiment with different waveform combi-
nations, and to this end, we have provided an applet as a demon-
stration and tool. The URL for the applet is
http://prime.jsc.nasa.gov/Applets/waveform.html. In addition to
the visible controls, there are also some useful keyboard shortcuts.
Complete instructions can be found on the web page for the applet.

One interesting clue to the way we process pitch is readily
apparent by experimenting with the applet. When you start the
applet, press the ”Play” button. This starts a pure sinusoidal tone
at 440Hz. Try pressing the ”Square” button to replace the sinusoid
with a square wave. You will notice that the pitch sounds higher as
a square wave than with the corresponding sinusoid. In fact, you
might even think that the square wave contains a strong dose of a
pitch an octave above the fundamental; however, from the Fourier
analysis, we know that there is no even harmonic of any sort in the
square wave. Now consider the plot of the power dissipation of the
square wave shown in 1. Note that the pulses occur at multiples
of π

ω
, not 2π

ω
, thus the discontinuities occur twice as frequently for

a given pitch as they do in the case of the saw tooth wave. This
provides a strong clue that the ear is actually counting rather than
(or perhaps in addition to) resolving sounds into pure harmonics.

For our own MathTrax application, we found that using a dy-
namic mixture of sinusoids, saw tooth and triangular waveforms
provided excellent pitch cues over a wide range of frequencies.
The experimental waveform applet provides the capability to ex-
periment with such schemes by allowing you to enter coefficients
of each basis function, and these coefficients can include depen-
dence on pitch or frequency. We find that using so-called sigmoid
functions 28 to fade various waveforms in or out is an effective
means to provide discontinuities at low frequencies and smoother,
more aesthetically appealing curves at higher frequencies. Sig-
moidal functions are described generically by the equation

a(p) =
1

1 + exp(c1(p − p0))
(28)

where a is the amplitude coefficient, p is the pitch, c1 deter-
mines the steepness and direction of the fade-in/out, and p0 is the
center of the transition region in the pitch interval. Note that we
can use equivalent expressions in f such as

α(f) = fδ

γ+fδ for a fade-in or
α(f) = 1

1+γfδ for a fade-out
(29)

where γ and δ are positive. The example on the web page uses the
alternate formulation shown in 29.
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