A New Way to Get Around: Experimental Investigation of Non-Speech Navigation Interfaces

Bruce N. Walker Sonification Lab Georgia Institute of Technology bruce.walker@psych.gatech.edu

Navigation by Visually Impaired

Permanent visual impairment

- e.g., macular degeneration, diabetic retinopathy
- Temporary inability to see
 - e.g., firefighters in smoke-filled building

Technological Support

- Augment, not replace, environment
- Spoken directions most common (with/without GPS)
- Collision avoidance (infrared most common)
- Recently integrated with GIS (but not blind- or pedestrian-specific)
- Sometimes integrated with visual display

Design Decisions

Tracking technology

- ✤ GPS, inertial, IR, RF, others
- Sensor fusion required
- Speech vs. non-speech output
 - Primary navigation cues
 - Auxiliary information

>Input device(s)?

Speech, twiddler, keyboard, Braille

Benefits of Non-Speech Audio

> Faster

- Briefer sounds possible, even with speeded speech
- Does not interrupt speech channel
 - Necessary when speaking, or using radio/phone
- Can be sound-engineered
 - Spectrum and loudness can be matched to listening environment
 - Sets of sounds ("themes") can be developed

SWAN: System for Wearable Audio Navigation

- Navigation tool for those who cannot look or cannot see
 - Accessibility applications
 - Military applications
- > Wearable computer
 - CharmedIT, Twiddler
 - InterSense InertiaCube2
 - ✤ GPS, IR, RF, & other tracking tech
 - Sensor fusion

SWAN Auditory Display

Navigation Beacons

- Spatialized audio <u>beacons</u> form a path which can be followed
- > Objects & obstacles
 - e.g., a desk in the hall; phone booth
- Surface Transitions
 - ✤ e.g., sidewalk to grass; start of stairway
- Location
 - e.g., lecture hall; intersection; office

Annotations

- e.g., "Puddle here whenever it rains"
- ✤ e.g., "Ramp on left side of entrance"

Spatialized audio earcon

Recorded speech or TTS

Evaluation

- Do they help the user safely accomplish specific tasks?
 - Navigation effectiveness
 - Situational awareness
 - Movement speed, efficiency
 - Comfort, satisfaction
 - Safety

Experiment 1

>36 Participants

- Georgia Tech students
- ✤ Age range: 18-30; mean: 20.6
- Males: 27 ; females: 9
- Normal/corrected-to-normal vision & hearing
- ➤ 3 maps (simple, medium, difficult)
- ➤ 3 beacon sounds (noise, ping, tone)

Results

Different beacon sounds lead to more effective navigation

Sound design matters

Practice effects

- Studies need to address long-term usage
- Capture radius effects
 - Sound design interacts with task requirements

More...

Good Beacons (noise burst)

Poor Beacons (pure tone)

38 333

Movement Rate & Efficiency

8 333

Effect of "Capture Radius"

- Capture radius = distance from the waypoint that the "next beacon" sound begins (= 5 meters)
 - Intended to allow for more natural walking around corners and turns
 - In reality, you likely never exactly reach waypoint, so c.r. is required
- Participants in the study "bounced" off edge of capture radius
 - Artifact of movement technique (not walking)

Experiment 2

>36 Participants (new)

- ✤ Age range: 18-28; mean: 20.9
- ✤ Males: 21 ; females: 15
- Same subject pool
- Same beacon sounds & maps
- Capture radius set to 30 cm

Medium beacon (pure tone)

Poor beacon (sonar ping)

8 333

Practice Effect

Practice

Summary

- > Non-speech beacons can be very effective
- Beacon sound design matters for navigation accuracy
 - Experimentation required
- Practice effects may change initial "findings" of effectiveness
- Realities of task affect sound design
 - Capture radius must be considered

Ongoing Work

Participants (!)

- Blind, blindfolded (simulated smoke)
- Implementations
 - Sound designs, information augmentation
- Individual Differences
 - Do all listeners respond the same?

HRTFs

Individualized HRTFs vs. simple stereo

Training

Clearly there are practice effects. Can we speed up the learning through training?

Thank you!

Questions...?

Bruce.Walker@psych.gatech.edu

