A New Way to Get Around: Experimental Investigation of Non-Speech Navigation Interfaces

Bruce N. Walker
Sonification Lab
Georgia Institute of Technology
bruce.walker@psych.gatech.edu
Navigation by Visually Impaired

- Permanent visual impairment
 - e.g., macular degeneration, diabetic retinopathy

- Temporary inability to see
 - e.g., firefighters in smoke-filled building
Technological Support

- Augment, not replace, environment
- Spoken directions most common (with/without GPS)
- Collision avoidance (infrared most common)
- Recently integrated with GIS (but not blind- or pedestrian-specific)
- Sometimes integrated with visual display
Design Decisions

- Tracking technology
 - GPS, inertial, IR, RF, others
 - Sensor fusion required
- Speech vs. non-speech output
 - Primary navigation cues
 - Auxiliary information
- Input device(s)?
 - Speech, twiddler, keyboard, Braille
Benefits of Non-Speech Audio

- Faster
 - Briefer sounds possible, even with speeded speech

- Does not interrupt speech channel
 - Necessary when speaking, or using radio/phone

- Can be sound-engineered
 - Spectrum and loudness can be matched to listening environment
 - Sets of sounds ("themes") can be developed
SWAN: System for Wearable Audio Navigation

- Navigation tool for those who cannot look or cannot see
 - Accessibility applications
 - Military applications
- Wearable computer
 - CharmedIT, Twiddler
 - InterSense InertiaCube2
 - GPS, IR, RF, & other tracking tech
 - Sensor fusion
SWAN Auditory Display

- **Navigation Beacons**
 - Spatialized audio beacons form a path which can be followed

- **Objects & obstacles**
 - e.g., a desk in the hall; phone booth

- **Surface Transitions**
 - e.g., sidewalk to grass; start of stairway

- **Location**
 - e.g., lecture hall; intersection; office

- **Annotations**
 - e.g., “Puddle here whenever it rains”
 - e.g., “Ramp on left side of entrance”

- **Spatialized audio earcon**
 - Recorded speech or TTS
Do they help the user safely accomplish specific tasks?

- Navigation effectiveness
- Situational awareness
- Movement speed, efficiency
- Comfort, satisfaction
- Safety
Experiment 1

- 36 Participants
 - Georgia Tech students
 - Age range: 18-30; mean: 20.6
 - Males: 27; females: 9
 - Normal/corrected-to-normal vision & hearing
- 3 maps (simple, medium, difficult)
- 3 beacon sounds (noise, ping, tone)
Results

- Different beacon sounds lead to more effective navigation
 - Sound design matters
- Practice effects
 - Studies need to address long-term usage
- Capture radius effects
 - Sound design interacts with task requirements

More...
Good Beacons (noise burst)
Poor Beacons (pure tone)

Sound design matters!!
Movement Rate & Efficiency

Rate

Efficiency

Practice — Practice
Effect of “Capture Radius”

- Capture radius = distance from the waypoint that the “next beacon” sound begins (= 5 meters)
 - Intended to allow for more natural walking around corners and turns
 - In reality, you likely never exactly reach waypoint, so c.r. is required

- Participants in the study “bounced” off edge of capture radius
 - Artifact of movement technique (not walking)
“Bouncing”

- May be more efficient
- Could be dangerous
Experiment 2

- 36 Participants (new)
 - Age range: 18-28; mean: 20.9
 - Males: 21; females: 15
 - Same subject pool
- Same beacon sounds & maps
- Capture radius set to 30 cm
Medium beacon (pure tone)

Note: No bouncing, due to smaller capture radius
Poor beacon (sonar ping)
Practice Effect

Practice
Non-speech beacons can be very effective

Beacon sound design matters for navigation accuracy
 - Experimentation required

Practice effects may change initial “findings” of effectiveness

Realities of task affect sound design
 - Capture radius must be considered
Ongoing Work

- Participants (!)
 - Blind, blindfolded (simulated smoke)

- Implementations
 - Sound designs, information augmentation

- Individual Differences
 - Do all listeners respond the same?

- HRTFs
 - Individualized HRTFs vs. simple stereo

- Training
 - Clearly there are practice effects. Can we speed up the learning through training?
Thank you!

Questions...

Bruce.Walker@psych.gatech.edu