Map-based Priors for Localization

Sang Min Oh, Sarah Tarig, Bruce N. Walker, and Frank Dellaert
College of Computing, Georgia Institute of Technology, Atlanta, GA

Abstract—Localization from sensor measurements is a Vvisible. In urban areas the view of the satellites can be
fundamental task for navigation. Particle filters are among  blocked by tall buildings or even foliage [4].
the most promising candidates to provide a robust and real- To deal with the problems of GPS or similar intermit-

time solution to the localization problem. They instantiate tent] ilabl t t f th
the localization problem as a Bayesian filtering problem and ently available sensors, many current systems fuse the

approximate the posterior density over location by a weighted ~ information coming from multiple, complimentary sensors.
sample set. In this paper, we introduce map-based priors for Simple solutions use a cascade of sensors, with GPS
localization, using the semantic information available in maps usually being the primary one. [4] use GPS and compass
to bias the motion mod_el toward areas of _higher probabil_ity. information, [5] uses GPS and vision, [6] use GPS and
We show that such priors, under a particular assumption dead Koni oth h d fusi ltiol
, can easily be incorporated in the particle filter by means ead reckoning. ers have proposed fusing muitiple
of a pseudo likelihood. The resulting filter is more reliable ~ Sensors using Extended Kalman filters [3], or fuse sensor
and more accurate. We show experimental results on a GPS- information from vision and inertial trackers [7]. However,
based outdoor people tracker that illustrate the approach and  dead reckoning is prone to drift over time and can quickly
highlight its potential. accumulate considerable error. Vision-based sensors, on the
other hand, typically need a large amount of data about
the environment, and are not robust to lighting and abrupt
motion changes.

In this paper we introduce map-based priors for lo-
calization. Localization from sensor measurements is B Map-Based Priors for Localization
fundamgntal task for navigation, but in many appllc_atlons The main contribution of this paper is the introduction
the available sensor readings are sometimes unreliable OF naps as a prior in a Bavesian filterina paradiam. We
not available altogether. As an example, at Georgia Tec% P P y gp gm.

L . : -use the semantic information available in maps to bias the
we are designing a system to localize blind people in

: o motion model toward the areas of higher probability. The
urban environments based on GPS, but it is well known . .
. . . . relative probabilities of different areas of the map reflect

that GPS is often unreliable in urban environments, e.g. . .
. . . gur beliefs about both the person and the environment. We
due to satellite obstruction. A redeeming feature of urban . . o .
: : ; . may assign a higher probability to the edges of a sidewalk

environments, however, is that often high quality map

. : . If we observe that blind people tend to walk more on the
of the area are available, and hence the question arise : L -

. . : ) edges of a sidewalk than in its center. Similarly, blocked
whether we can use the information contained in these

maps to aid in the tracking process. Our solution is to usOff roads would have higher probability for a pedestrian

a priori available maps to define a probability distribution.{;ﬁaln regular r.oads, and paths that lead to centers O.f social
over locations and use that to auament the motion modérllteractlon will be more probable than those leading to
ov 1ons and us ug otion areas of low interest. Given no other information except
in a Bayesian filtering framework. The theory is valid for " . o
. L .such a probability map, a motion model, and the initial
any Bayesian filtering framework, but the current paper ig osition and orientation of a person, we can estimate the
mostly concerned with its implementation within a particlep . ap ' -
) : : : . “short-term trajectory of this person by considering the
filter, a sampling-based implementation of the Bayesian . .
filter [1], [2] most prqbable behav_lor. We show thgt such priors, uno_ler
S assumption of a particular mathematical form, can easily

be incorporated in the patrticle filter by means of a pseudo
A. Localizing Robots and People likelihood.

There is an extensive literature on localizing both robots
and people. A good overview of the robot localization and>- Related Work
mapping literature can be found in [2]. Localization and Maps have been used previously for robot localization.
tracking of people has been explored most thoroughly ihaser range data [8], [9] or odometry [10] can be matched
the Augmented Reality (AR) community. While systemsto an existing reference map to estimate location and orien-
for indoors tracking have produced good results, outdodation. For example, [1] have used maps of the environment
tracking has proved to be a more challenging problem [3jwhich differentiate between obstacles and paths, but only
Most current applications do real-time outdoor trackingor the process of culling useless particles. One observation
with a combination of GPS, dead reckoning and visioris that sighted people generally walk more in the center of
based technigues. GPS is not always reliable, since itorridors. This can be realized by constraining the particles
accuracy depends crucially on the number of satellite® move on a Voronoi diagram of the space [11].

. INTRODUCTION



D. Overview B. Particle Filters

The remainder of this paper is organized as follows: Particle filters [1], [13], [14] take an importance sam-
in the next section, Section Il, we present the problen'?IIng approach to |mplgment the Bayes filter (_3)' They
of localization as an instance of the Bayesian filtering?PProximate the posterioP(x-1/Z11-1) as a weighted
problem and describe particle filters: Section Ill discusseS2MPle set,
map-based priors and a sampling technique with theoret-

N .

ical justification; Section IV contains experimental results P(%-1|Z11-1) =~ waQles(le,xt_l) 4)
illustrating the improved performance of our method over i=

GPS alone.

where IocationxtQ1 and weightwt(g1 are the information
stored inith particle, andN is the number of samples.
The importance sampling approach is applied to sample
efficiently from the posterior density (3) [14]. In the im-
A. The Bayes Filter pprtz_ancg:- sampling app_roach, we sample fr_ompmf.)osal
distribution and we weight each sample with the relevant
The localization problem can be expressed as a Bayesiareight. In the case of the localization, the proposal distribu-
filtering problem [1], [12]. Location is typically representedtion is the predictive density (2) and the individual weight
as a three-dimensional vector[x,y,8]" encoding position is obtained from the measurement moBi&|x ). Thus, the
and orientation, but can be more general, e.g., full 3Dirst step to estimate the current posterior denBity¢|Z; )
position and attitude with respect to a reference frame. Irecursively from the previous posteri®¥(x_1|Z11-1) IS
the Bayesian framework, we like to obtain the posterioto compute the predictive distribution from which we can
density P(x|Z11) over the current statg conditioned on efficiently sample. With the given representation, we can
all measurement®;; = {z|i = 1..t} up to timet. By Bayes approximate the empirical predictive distribution (2), i.e.,
rule this is expressed (up to a constant factor) as the produtte mixture model :
of a likelihood P(z|%) and a priorP(x|Zi1—1) obtained N
recursively from measuremenfs;_1 up to timet — 1: P(x|Z11_1) ~ ZthQlP(Xt\Xt(Bl) (5)
1=

Il. LOCALIZATION

P(%|Z11) O P(z|%)P(%|Z11-1) (1) Above, the mixture coefficients are the sample weights
Wth, and the mixture componeﬁ’r(xdxfgl) is the motion
We refer to P(z|x) as the measurement modeds it model for each samplel’’,. This empirical predictive
describes the probability of making observatimnwhen  distribution is then used as the proposal distribut@(x;)

the person is at locatior. Thus, the measurement modelfor the importance sampling, from which we obtain un-
is selected to capture the error characteristics of the Sefieighted samplesf” :

sor. The predictive distribution Px|Z11-1) denotes the
probability of a person being in the locatiog at timet (i) B N (i) (i)

given the history of sensor measuremefits 1. We obtain %7 ~Qx) = i;Wt_lp(XdXt_l) ©)
the predictive distribution by integrating tmeotion model .

P(x|%_1) Over the posterioP(x_1|Zit_1) : To sample from (6), one first chooses a comporieat

random, according to the Weighwsfgl, and then sample
- from the corresponding componée?it \x[Ql). This is done
P(%|Z11-1) = POe[x-1)P(¢-1/Z11-1)  (2) N times, whereé\’ can equal ta\, or can be adapted to the
o complexity of the hypothesis or available processing power
The motion modeP(x |x%_1) encodes the dynamics of the [15]. The unweighted sample{sit“)}g“;l are then upgraded
target as a conditional density of the current locatipn to the current posteridP(x;|Z;+), yielding the importance
givenx_1. Note that this motion model can be conditionedweightswi’:
on additional information such as a control inpuiat time
?hgﬁéizot:etlg\?v.sake of notational simplicity we leave this Wt<j) _ ktP(Zt‘)?t(j))P(‘)?t(j”Zl:til)
Combining (1) and (2) we obtain tHayes filter Q()A(t(]))
Thus, the current posterid?(x|Z11) is approximated by
P(%|Z11) = ktP(Zt|Xt)/ P(%|%_1)P(%_1Z11-1) (3) the following newly obtained weighted sample set :

X1

~ kPR (7)

N .
where k; is a normalizing factor. Thus, the posterior P(x|Z11) = ZWI(J)é(xt(J),xt) (8)
P(x|Z11) over location is recursively obtained from the =1

previous posteriolP(x_1|Z1t—1), by integrating the pre- The key advantage of particle filters is that they can
defined model of the target dynamics and the sensaepresent arbitrary posterior probability distributions, and
measurements. can deal with arbitrarily complex measurement models.



1. M AP-BASED PRIORS 2) The locationx and x_; belong to the distinct
probability zones. In this case, the map-based priors
for the locations differP(x|M) # P(x_1|M).

n the first case the augmented motion madeled |1, M)
s the same as the unconditional motion moBet: [%;—1).

A. Localization with Map-based Priors

When localizing either a robot or a person in a know
environment, it would be beneficial to be able to use th

available semantic information in maps to bias the motiory, . . i . .

model P(x|%_1) toward the areas of higher probability his is because the local transition assumption will allow
The map in figure 1 shows the probability of being in athe tran3|t|or.1 to be unaware of the glqbal ridp .
region with colors. The zone with the brighter color is However, in the second case of the inter-zone transition,
the area with the high probability while the zone withthe augmented motion mod®(x|x-1,M) should be ad-
the darker color is the area with the low probabilitylusted by the relatn;(exdrayo of the map-based priors between
The black zones denote the zero probability areas whichi® tWo IocanonsP.(x‘Hl‘.M). This results in an augmented
may include the buildings and shrubs if we consider onlynotion model which is biased toward the the areas of
outdoor localization. Note that the map can either contaiffigher probability. In general, the inside-zone transition

information about the outdoor or indoor environments ofaSe is & special case of thpt?)(tim;ar-zone transition case with

both. Denoting the map by, the Bayes filter (3) in this the map-based prior ratigr =" equal to one. Thus,
case now depends vl : under the particular assumption, we obtain the augmented
motion model :

POXZ11.M) =kP(@ %) | P01 M)P(x-1[Z11-1.M)

-1
. © POxIM) g
where now theaugmented motion model(R|x_1,M) is P(X[%-1,M) = GtP(thxtfl)(W) (10)
conditioned on the information in the mayp. , _1[3
The use of pre-existing maps generates a more informed = 0tP(x[x-1)P(x[M) (11)

posteriorP(x|Z11,M) by exploiting knowledge about the . o
environment. For example, people tend to walk on th&/here thea; is a normalizing constant arfél denotes the

sidewalks rather than on the road or on the grass, robofgative importance of the map-based prie(x|M) with
tend to stay away from objects due to on-line obstacléeSPect to the unconditional motion mode{|x;1).

avoidance methods, etc. There is another justification for the resulting augmented
However, there are two potential difficulties : motion model (11), based on the Gibbs distributifx) :
1) While it is feasible to either hand-build or learn a
map-based prioP(x|M) over locations, it is not P(x) A & EX (12)

immediately obvious how to combine this informa-

tion with the unconditional motion mod&(x[x-1)  The Gibbs distributionE(x) is interpreted as an energy
to obtain the augmented motion modRk:|%—1,M).  function of P(x). The x that maximizesP(x) equals the

2) Depending on the nature of the augmented motioR that minimizes the energy functio&(x). Thus, the
modelP(x[%-1, M), evaluating the integral in (9) is aqugmented motion model can be obtained by defining its

potentially much more difficult. energy functiorE(x) which can also be interpreted as the
Below we show that both difficulties are overcome usingpenalty function. Natural phenomenon prefers lower energy
a particular form for the augmented motion model. states and accordingly there is less penalty in such states.

Thus, the energy function of the augmented motion model
P(x|%-1,M) represents the penalty at the poitaround
the specific locationg_1 given the mapM. Again, if we
A map-based prioP(x|M) and the unconditional mo- focus on the local transitions only, we can claim that the
tion model P(x|%_1) can be combined in an augmentedpenalty at a locatiork is the linear sum of the penalty
motion modelP(x|x_1,M) if we require the augmented which is unconditioned on maM and the penalty that
motion model to be applied tmcal transitions The local results from the inter-zone transition.
transition assumption over the augmented motion model The assumption addditive penaltyesults in the follow-
states that the transition from the previous locatiory  ing augmented motion model :
to the current locationx, occurs only locally, i.e. the
model considers only the short transitions between two
close locations and the transitio.n is not inf_luenced by _the P(%|%_1,M) = aj exp{logP(x|%_1) + B logP(x|M) }
global map structures. Under this assumption, all possible (13)
transitions can be classified into two cases : Above, o’ is a normalizing constant arfdl is a parameter
1) The current locationg and the previous location that balances the map-based prR(x|M) the uncondi-
X_1 are in the same probability zone. Thus, thetional motion modelP(x|%_1). The assumption of the
map-based priors for the two locations are equaladditive penalty model is intuitively appealing, and the
P(x|M) =P(x_1|M) . resulting model in (13) equals the model (11) exactly.

B. Augmented Motion Model
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Fig. 1. Tracking without using a map prior on the first dataset. NoteFig. 2. Tracking using a map-based prior on the first dataset. Compared
that the particle trace is almost coincident with the GPS trace. with Figure 1, the tracker now prefers to stay on the heavily traveled areas
of the map such as sidewalks (white in the map). The resulting path is
much closer to the ground-truth path, as a result of mediating the noisy

C. Incorporating Map Priors in the Bayes Filter GPS data with map-based prior.

Plugging the new motion model (11) into the augmented
Bayes filter (9), the map prior factoP(x|M)P can be the data is a handheld Garmin GPS 72s receiver that has
moved out of the integral, as it does not dependxon:  an error of less than 15 meters 95% of the time. Data from
GPS is converted from Latitude/Longitude coordinates to
map coordinates using the assumption that the curvature

o = 4 B /
P(x|Z11,M) = k'P(zx)P(¢[M)"P'(x|Z11-1.M) ~ (14) of the Earth is negligible over the small region of interest.

where Two GPS datasets were gathered on the Georgia Tech
B campus, and used as the test data for the localization
P'(%]Z12-1,M) _/X{_l P(x[%-1)P(x-1/Z11-1,M) with/without map-based priors. In addition, we assume a

is the predictive density without taking the map prior imoGaussmn measurement model for the GPS.

account . This has the same form as Equation 3 on page 2, )

but now with an additional factoP(x|M)? that mediates B- Building the Map Prior

the information given by the map pri&(x|M). The areas in the maps fall into one of the six possible
The implication of the particularly simple form of the zones and are shown in different colors as in Figure 1. The

augmented filter (14) is that incorporating the map prioareas, corresponding colors and the assigned probabilities

in the particle filter is straightforward. We can proposeare as follows in order of decreasing probability : sidewalks

samples from the same proposal den€ity;) (6), and sim-  (white, 60%), parking lots and blocked off roads (light

ply augment the likelihood weight with a fact®(x|M)?  gray, 30%), lawns (gray, 5%), roads (dark gray, 5%), shrubs

derived from the map prior: (very dark gray, 0%) and buildings (black, 0%). The ratio

K’P(zﬂxf”)P(xt(”|M)BP’(xt“)|ZH,1,M) of two probabilities determines how easily a particle can

Wt(j) : (15) cross the boundary of two areas. The relative importance
Q()‘(t“)) ratio3 in Equation 11 is set to be 1.0 in all the experiments.
= KP@R)PEIM)P (16)
C. Data set 1

In other words, we have exactly the same particle filter as

before, but now we multiply each importance weight by an Figures 1 apd 2 show that results obtained using the
additional map derived factor (&M )E. map-based prior approach are more accurate, stable and

keep closer to the actual path most of the time. The blue
crosses are the trace of the actual GPS readings, the green
) line is the ground truth, and the red crosses are the weighted
A. Experimental Setup mean of the particle cloud at each time step. In figure 1,
We show results on two different datasets collectedve show the behavior of the particle filterithout using
with a GPS receiver in outdoor environments. The Globah map prior. Due to erroneous GPS readings the particles
Positioning System (GPS) is widely known as a solutiorpass through the shrubs at the bottom left and pass through
for outdoors localization. The GPS receiver used to gathdéhe building at the left center. In addition, the particles

IV. RESULTS



pass through the lawns during most of the path in th
upper right. By using the map-based priors we can see
2 that the particles avoid passing through the shrubs a
buildings, and stay on the center of the sidewalks most ¢
the time. The advantage of the map priors is most clearl
evident when the GPS readings are noisy and unstable. Tt
tends to happen around tall buildings, where the satellit. :
reception gets bad. On the left side of figure 2, we can se |
that the particles correctly follow the sidewalk where th
GPS readings erroneously indicate that the person is goi
through a building or shrubs. In this case the particles te
to follow the sidewalk, since it is the highest probability
area within the GPS error radius.

[ #\var | 5m \ 10 m \ 15m |
500 3.01/2.43720] 296/72.37/20| 2.96/2.487 16
1000 | 3.037/2.42/20| 2.98/2.41719] 298/251/16
1500 | 3.0372.43/20| 2.98/2.44718| 2.98/2.46 17

TABLE |
RMSERESULTS FOR THE FIRST DATASETTHE ROWS ARE THE

NUMBER OF PARTICLES USED AND THE COLUMNS ARE THE ASSIGNED

GPSVARIANCES. EACH CELL SHOWS THREE ESTIMATES THE RMSE : f| + ++ weignted mean of paricies
OF THE NO-MAP VERSION LOCALIZATION IN METER, MAP-PRIOR 1 5| wun oPS

BASED LOCALIZATION IN METER AND THE PERCENTAGE OF s 3
IMPROVEMENT BY USING MAP-PRIORS

¢l = Ground Truth

Fig. 3. (a) Left. Tracking without map priors.

. . . b) Right. Tracking results with map priors.
To obtain a more quantitative evaluation of our methods ) Rig g PP

we systematically varied several key parameters and tabu-

lated the results. Table'l shows the rqot mean squared errqss pata set 2

(RMSE) of each experiment along with different values for o . .
the number of particles and GPS variance. The RMSE gives 1h€ second dataset shows a similar improvement in

a measure of how much the estimated path differs from tH&acking due to the use of map-based priors. Figure 3(a)
ground truth : shows the tracking result without map-based priors and the

result in figure 3(b) is obtained by applying the map-based
P (i —t)2 priors. On the top right of 3(a) we note that, similar to
RMSE=/ == —— (A7) the first dataset, the particles follow the GPS through the

RMSE in equation 17 is calculated by summing the square@f’"di”g?’ while the particles in 3(b) stays in the higher
distances of each estimated locatibrfrom the ground probablllty area nearby. Similarly, the particles in 3(a) go
trutht;, which is estimated by interpolating between knowrNt0 Shrubs and the road at the bottom of the map due to the
waypoint locations, and dividing by the total number of€'TON€OUS GPS readings, but th_e particles in 3(b) cpnstaptly
data pointsn. stay near the center of the sidewalks. Both _trajectorles
It is evident that the map-based priors perform bettefl€viate from the true green path at the top right of the
when the error of measurement model is set to be 1Bap, due to the extremely bad GPS readings. The number
meters or less. This is expected since the Garmin Py particles are set to be 500 and the GPS variance is set
receiver is known to have an error <15 meters 95% of° P& 5 meters for the results in figures 3(a) and 3(b).
the time, which under our Gaussian measurement model Theé RMSE results with different parameter settings are
assumption translates to a variance of approximately 7 g4mmarized in table Il. As in table I, thg results show the
meters. Moreover, a larger number of particles does né&verall advantage of our map-based priors approach.
seem to bring additional positive effect; the RMSE of map- EVven though the advantage of using the map-based priors
prior based localization is relatively static for a constants evident in the figures, the RMSE does not always reflect
GPS variance. This is because 500 particles can efficiently
approximate the posterior in Equation 8 without neeg vy 5m | om | 5m |
for additional number of partides which leads to mor 500 221/3537/16] 4027/ 343/ 15] 3.85/3.47 7 10
processing requirements. This is a particularly encouraging 1000 | 4.06 / 356 / 12| 4.01/3.42/15| 3.84/35977
result for a mobile application where processing resources 1500 | 4.09 /3.56 /13[ 4.03/3.39 /16 3.88/369/5
may be limited. For the results shown in figures 1 and 2 the TABLE I
number of particles are set to be 500 and the GPS variance RMSERESULTS FOR THE SECOND DATASET
is set to be 5 meters.




this. For example, one of the results (using 1500 particleSSWAN system will provide guidance both outdoors and

and 15 meters GPS variance) in table Il shows only @&doors, with GPS serving as the primary sensor outdoors
5 percent performance improvement by using map-priorand computer vision as the primary sensor indoors. In
There are two reasons for this. Firstly, the errors betweetonjunction with inertial sensors and the map-based priors
the estimated and the true path are small for most aiscussed in this paper, we expect an effective and suc-
the path in both datasets, since the GPS tends to folloeessful practical application, of benefit to a great number

the ground truth closely in open areas. This outweighsf people.

the larger errors in some sections of the path, and brings
the overall RMSE for the two trajectories, which are
generated with/without map-based priors, closer. Secondly,
the RMSE calculates error based solely on the distan
between the estimated and true locations and does not take
into account the context of the estimated locations. For
example, at the top right part of figure 3(a) the estimates
lie inside a building, and RMSE fails to assign higher error
for those points than to estimates that lie the same distancil
away from the ground truth but on the sidewalk, as in the
top right of figure 3(b). Hence, even though the results in[2]
figure 3(b) are visually better, there is only a slight decrease
in RMSE.

In summary, the map-based priors provide an effective[3]
and efficient means of improving the accuracy of local-
ization schemes. We showed the improved tracking resultgy
gualitatively in figures 2 and 3(b), and quantitatively in
tables | and Il. Specifically, map-prior based localization .
produces more logical results in the presence of Iargé]
sensor noise and brings the estimated path closer to the
ground truth. (6]

V. CONCLUSIONS ANDFUTURE WORK 7]

We introduced map-based priors, with which we can 4
efficiently perform localization using particle filters even
when the main sensor is inaccurate or unreliable at timesl®]
As the experimental results show, even the localization
using noisy sensors results in far more stable local tracking,
representing the ground truth route more correctly. Thil0]
technique is applicable to variety of applications, including
tracking robots and humans. [11]

Even though the initial results are promising, there is
plenty to do in terms of future work. In fact, the system We o)
have implemented can be considered a bare-bones version,
so improvements in most areas should lead to even better
results. For example, the accuracy of our method relies dil
the quality of the probability map. A more realistic and
useful map could be obtained by taking observations df4l
the area in question over a period of time. Furthermore, a
time-dependent map could be built in this way. Such maps
should lead to improvements in the accuracy of the methodtS]
Also, in our particular application, the results we show
are not as good as they could be if we had used a better
error model for GPS. In particular, the Gaussian model we
used is not very appropriate to model the systematic errors
associated with GPS.

As a future application of the proposed localization
technique, we plan on integrating the algorithm into the
Georgia Tech System for Wearable Audio Navigation
(SWAN), a mobility tool for the visually impaired. The
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