
Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-1

AudioPlusWidgets:
Bringing Sound to Software Widgets and Interface Components

Benjamin K. Davison and Bruce N. Walker

Georgia Institute of Technology
Sonification Lab
 654 Cherry St.

 Atlanta, Georgia 30332-0170
 ben@cc.gatech.edu, bruce.walker@psych.gatech.edu

ABSTRACT

Using sound as part of the user interface in a typical software
application is still extremely rare, despite the technical
capabilities of computers to support such usage. The ICAD
community has developed several interface concepts, patterns,
and toolkits, and yet the overall software scene has remained
dominated by the visual-only user interface. AudioPlusWidgets
is a software library offering scientifically grounded audio
enhancements to the standard Java Swing API. Through
metaphors and transparency, AudioPlusWidgets can be inserted
into existing code with minimal changes, easily adding auditory
capabilities to the interface components in the system. This
library uses an event-based model and an audio manager to
render speech, MIDI, and prerecorded sounds.

1. INTRODUCTION

Using sound to communicate information to the user of a
software application is certainly not a new idea, especially
within the Auditory Display community. As examples from the
early days of ICAD, Mercator and Pink delivered entire
operating systems with significant sound interfaces [1, 2].
However, sound in the user interface remains a very rare
feature, despite decades, now, of interest in the topic. Part of the
reason for this, we contend, is a lack of general-purpose, easily
implemented, and empirically validated programming methods
that allow developers to implement good auditory interface
components quickly. This paper focuses on the development of
a system of programmer-usable widgets (components of the
interface such as buttons and scroll bars) that are enhanced with
audio capabilities.

Unfortunately, years of auditory display research has only
minimally impacted most software. While we are not aware of
any comprehensive study on the use of sound in software, our
searches and experience have revealed few applications in a
typical home or business computer that use sounds beyond basic
alerts and confirmations. We need to distinguish, here, the idea
of adding audio to the actual interface controls, from the use of
sound to present data, as in sonification or auditory graphs, and
from the creation of sounds, per se. For example, there are
certainly many sonification tools [3-7], and also programming
tools such as JASS [8] and csound [9] that are used to create
sounds, but they generally are not used to add audio to the user
interface components. A notable exception is the class of
(historically add-on) screen reader software, such as JAWS,
[10] that adds simple speech output capabilities to an interface.
Indeed, some operating systems now have speech output
capabilities built in. But the use of any other kinds of audio
enhancements (i.e., non-speech sounds) to the interface remains
virtually nonexistent.

1.1. Why Are Audio Widgets Not Widespread?

One might argue that after twenty years of interest, perhaps the
reason audio is not used more in interfaces is because it is not
possible. Or perhaps it is not considered useful. Or perhaps it
has simply not been implemented in quite the right manner. At
risk of revealing our own intention, we subscribe to the last of
these arguments, and for that reason have embarked on this
project to develop audio enhancement tools that can be
implemented by any programmer, with great ease and excellent
results. But for the sake of argument, let us consider the other
possible arguments.

A major concern of any invention is its usefulness in real
situations. Does the lack of rich sound in software suggest that
it is not useful? Certainly most software will work and even
can be made generally usable without sound. While this
question is a public concern among user interface software
researchers, it is still largely unexplored and unanswered.

Some developers may consider that the usefulness or benefit
of adding audio to an interface is small, relative to the cost of
implementing it. Even if programmers believe in the benefit, the
actual or perceived costs, in terms of implementation difficulties
or simply extra programming, may tip the cost-benefit equation
away from including audio. To rectify this situation, one can
address the benefits (and perceived benefits) side of the
equation, as well as the cost (programming difficulty) side of
the equation.

On the benefits side of things, several researchers have
demonstrated that audio can enhance a user’s ability to
complete tasks [11, 12]. In fact, the existence and vibrancy of
the International Community for Auditory Display (ICAD) can
be seen as a significant testament to the perceived value of
using sound in this way. And of course, for persons with vision
impairments, auditory enhancements have immediate and
obvious benefits. This information, however, may be unknown
to software engineers: A study by Lumsden confirms a general
programmer ignorance about auditory displays [13].

However, it could be argued that programmers should not
need to know or worry about the task benefits of audio
enhancements in order to use them, so long as the costs are low.
Software engineering, like much of engineering, is a highly
modular process, dependent on outside groups to develop lower
level parts. The programmer depends on software library
developers to create the tools that are used to build software
applications. For example, in programming a typical Java
program, most of user interface development will focus on
placing the widgets in the right place and making them call the
right functionality. The Java library developers have already
worked out how the button or slider should look and react in
different operating environments. Programmers generally do not

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-2

question the usefulness of a slider, nor do they debate the colors
or shapes or characteristics of the slider; they simply know it
will allow the user to interact with the software in a predictable
and effective manner.

While researchers developing auditory widgets in the past
have demonstrated their work in a lab environment or in limited
live environments, they have typically not sufficiently extended
their code to be usable by the general software community.
Further, each developer has implemented things in different
ways, leading to a lack of standardization and no common or
shareable tools. Given that each developer has had to make
microscopic decisions about how to implement an audio-
enhanced menu or button, it is no surprise that the
implementation of auditory display research findings in these
tools has been haphazard and project-specific.

This lack of a library hurts the auditory interface
community as well. Since there is no standard or even
competing standards, each lab must develop their process alone
or go through the burden of integrating a colleague’s code.
Thus, one lab’s implementation of earcons, for example, will
almost certainly be different from that of another lab. This can
lead to being unable to compare two works, and a fair amount
of nearly redundant studies will have to be carried out. This
constant reinvention of ideas greatly hinders the development of
our science. If the structure of our science is instantiated in the
structure of the software libraries we use, then what is currently
known to be best practice needs to be obvious from the
libraries’ implementation. For the software developer, using
these kinds of theoretically-derived and empirically-validated
libraries means that his program is tuned to the state of the
science. For the researcher, open avenues of research are clear
since the traveled paths are exposed in the standard.

Thus, we come back around to the point that while there are
many potential benefits for using audio in interfaces, for them to
be realized we need to take another try at creating easily-
implemented widget libraries that stand a better chance of
becoming more widely adopted. This paper explains the
development of such an audio-enhanced widget library for Java,
called AudioPlusWidgets, or APWidgets for short. The
APWidgets widget library extends many of the typical Java
Swing widgets to include sounds. Sometimes, the sounds are
nominal. In many cases, however, research concepts from the
auditory display and auditory perception field have been
implemented in novel and significant ways. Examples include
advanced auditory menu elements, and soundscapes. The
library depends on auditory concept metaphors but attempts to
reduce the basic library interface to Java Swing metaphors.
Like typical Java widgets, APWidgets can be implemented
without any understanding on the part of the programmer as to
why the “look and feel” (or sound) of the widget is as it is. The
initial barriers to begin using sounds are dramatically reduced,
although of course some understanding of the underlying theory
will ultimately almost certainly lead to better interface designs.

The next section will briefly explore some of the great body
of related work in this area. Section 3 describes the structure of
the APWidgets library, including the motivation behind some of
the design decisions. Section 4 provides some examples and
comparisons between standard Java programming and using the
APWidgets library. Finally, Section 5 wraps up this paper with
a brief discussion on the current evaluation and efforts toward
future work.

2. RELATED WORK

While developing this audio-enhanced Java widget library, we
explored the related scientific work. In order to characterize the

current state of the science, we explored the widgets invented
by researchers over the years. These ideas, sometimes varying
in schools of thought, provide the “way to make” the sound for
the widgets. Following an object-oriented programming view
of matching the code to the solution domain, we created classes
that modeled the widget concepts. These ideas include earcons,
auditory icons, spearcons, text-to-speech (TTS), and
soundscapes. Other important ideas such as audio progress bars
were explored but not implemented in the current version of the
widgets.

The second avenue of research is the creation of usable
Application Programmer Interfaces (APIs). A library is a set of
code designed for a particular domain of functionality. An API
is a programmer’s front end to a given library. This includes
objects, their properties, their methods, and author-created
documentation about their use. For example, the Java Swing
API is a set of classes that give tools for programmers to more
easily create graphical user interfaces. It also includes an
extensive hypertext documentation that includes methods,
parameters, what the methods return, and examples of how to
use the objects. Libraries and APIs are created for the
programmers, but the end user benefits from quicker and
cheaper development cycles. Libraries have been used by
software engineers for decades, and are becoming increasingly
sophisticated. Recent work has explored how libraries can be
more useful to programmers. We support our library API
understanding through the use of direct metaphors to the
scientific meanings, such as an Earcon class representing an
earcon concept. We also background almost all of the
differences between our code and typical Java widgets.
Therefore, the programmer can learn the metaphors only if he
has to dig deeper than basic widget use.

Finally, we explored existing audio widget libraries. These
were analyzed in terms of the first two areas: the widgets
supported and the API usability. Many of these libraries offer
specific tools that do an excellent job at completing their task.
However, we feel that the APWidgets library offers a solution
which is more compatible, flexible, and usable than many of the
alternatives.

It is important to reiterate that several large scale audio
systems, such as MERCATOR [2] and Pink [1], have been
considered during the development of APWidgets. However,
our discussion here is limited to using auditory widgets in a
largely graphical programming world.

2.1. Audio Concepts and Widgets

The following discussion of auditory widgets is aimed at a
basic understanding of the auditory interface concepts, and
some thoughts about how to implement those ideas in widgets.
While many audio concepts and widgets have been conceived,
this part will only cover those which we explored with
APWidgets.

Auditory icons are natural-sounding representations of
objects. The graphical analog is an icon, which visually
represents the object it emulates. For example, a video file
might be represented by a movie reel as an icon and the clicking
sound of the moving reel as an auditory icon. Gaver introduced
auditory icons [14] and explored their use in the SonicFinder
auditory interface [15]. From an implementation standpoint, the
auditory icons could be prerecorded sounds played back on an
event. They could also be dynamically generated based on
particle modeling.

Earcons capture less about the object itself but more about
its relation to other elements. For example, if a menu had a tone
of a piano playing the A note, a submenu could have the A note

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-3

followed by a B note. Blattner et. al. introduced earcons [16].
Their work explored grouping earcons to give the user
hierarchical information. In user testing, Brewster [11]
determined that earcons could effectively convey information to
the end user. Brewster also determined that earcons were more
effective when the sound was a musical note instead of a pure
tone. From a programming standpoint, the earcon possibilities
include prerecorded sounds and dynamically generated MIDI.

Spearcons are a non-speech audio representation of a
spoken phrase [12]. Generally, a text phrase is converted to
speech via a text-to-speech (TTS) synthesis, and the TTS phrase
is sped up dramatically, to the point where it may even be no
longer recognized as speech at all. Alternatively, a recorded
audio file containing the spoken phrase can be used as the base,
and then sped up directly. Either way, the resulting spearcon is
like a fingerprint of the original text phrase [12]. Spearcons
have been shown to be useful as enhancements to menus, and as
such can also be followed in a menu by the uncompressed TTS
phrase if the user might need access to the full text message.
Walker and colleagues [12, 17] showed that spearcons produced
more accurate responses from participants compared to auditory
icons or earcons and an equal accuracy when compared to TTS.
Spearcons can be implemented dynamically with a Text-to-
speech engine or use prerecorded speech sounds for the final
product.

Soundscapes are auditory scenes. They can be natural, such
as the sound in a park, or synthesized. The purpose of a
soundscape can be aesthetic or informational. TAPESTREA
[18] and SoundScape [7] are just two examples of tools
designed specifically for building soundscapes. In general,
soundscapes can be implemented through particle modeling,
additive synthesis, physical modeling, generated MIDI, or using
recorded sounds.

There are several design guidelines for building auditory
widgets [19, 20]. Recently, Yalla and Walker’s auditory menu
review summarized the logical structure and activities afforded
by menus [21]. These guidelines often provide a mix of
software and audio design. APWidgets focuses on the software
implementation. Therefore, the audio design for files which can
represent auditory icons and earcons is still rudimentary in the
current implementation. This follows the general Java
implementation, where items such as icons are expected to be
generated separately by an interface designer or graphical artist,
and supplied to the program.

Table 1 briefly describes reasonable ways to implement
each sound type. The first row of letters indicates approaches
that could be the most flexible. The second row indicates
approaches which could be used in some, but not all, situations.

Each implementation approach has its own tradeoffs.
Recorded sounds can provide high-fidelity, controlled
experiences generated by the programmer. The files require
storage space. Recorded sounds are also limited to the sounds
generated at the time of the software release. The other
approaches all offer dynamic, run-time sound generation.

Physical modeling is an attempt to simulate the sound
generation process of a natural environment. For example,
maracas could be modeled in a CAD environment as an
ellipsoid with a handle and round beads inside. By moving the
maraca shell, the user moves the beads inside and a lifelike
sound is generated [22]. It is more flexible than recorded
sounds, but it is only as good as the simulation. A more
detailed simulation requires additional processing, and the
sound quality overhead must be balanced with performance
considerations.

MIDI is a computer-readable musical notation. Instead of
capturing a waveform, MIDI generates sound through

commands such as instrument selection and note specification
[23]. It was created when bandwidth and processor speed was
low, and generates relatively compact notation. When it is time
to play the sound, the MIDI is sent to the sound card, which
then generates the music. Since each sound card and operating
environment use different ways to generate the sound, there are
audible differences between two different renderings of the
same MIDI information.

Text-to-speech (TTS) is a special derivative of physical
modeling. Given a textual input, a TTS engine will attempt to
create and speak words. Often, TTS engines are capable of
modifying the speech properties such as voice quality and
speed. Human listeners can often determine that a TTS engine
is synthesized, but understandability is good enough for TTS-
dependent computer users to rely on the tools for information.

Sound Type

Auditory
Icons

Earcons Spearcons Spoken
Text

Soundscapes

RP
-

RM
P

RT
P

RPT
-

RP
-

Table 1. Reasonable ways to implement sound types.
R = recorded sound, P = physical modeling,

M = MIDI generation, T = Text-to-speech generation

2.2. Usable APIs and Design Considerations

There are several papers on API usability [24-26]. They
suggest cognitive and heuristic approaches to measuring
usability. APWidgets has components which follow new
metaphor, Java concepts, or audio research metaphors. The
new metaphors encapsulate the back end processing and playing
of the sound events. These will be explained in more detail in
Section 3.

The Java concepts are Swing components selected for
enhancement. Each widget can be called and extended as
before, with an “AP” before the widget name. This leads to
functional programs with an API that may never need to be
understood by the programmer. “API transparency” refers to
this approach; the API is invisible to the programmer unless an
uncommon change is required. If changes to the regular
functionality are necessary, then the programmer must learn
some of the new metaphors. By leveraging transparency, we
effectively remove most learning difficulties for basic library
use.

Audio research metaphors include TTS, earcons, auditory
icons, spearcons, and soundscapes. These concepts are turned
into coded representations in APWidgets; for example, an
earcon concept is instantiated by constructing an Earcon object.

2.3. Audio Libraries

There are several existing audio libraries, but they fail to be
used for general software production. Some approaches have
been too specialized to a particular implementation. Others
provide design patterns and guidelines but no actual
implementations. APWidgets captures many auditory widget
ideas in a completed library and makes their use transparent or
metaphorical.

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-4

3. SYSTEM DEISGN

APWidgets was designed to provide a base for Java
programmers to easily implement audio interface ideas into
their programs. The event-driven approach features a sound
manager that accepts incoming sound requests and decides
whether to honor them or not. The sound manager then sends a
threaded request to sound creation tools, including MIDI, TTS,
and standard audio playback. A listener wiring tool connects
each of the audio components to the sound manager behind-the-
scenes.

The sound rendering is completed with third-party tools.
Sound file playback is implemented via the Java API. MIDI
generation uses Java Sound and JFugue [27]. Text-to-speech
generation is achieved through Java Sound, JSAPI, and
FreeTTS [28].

3.1. Development Goals

There were several goals in creating this software. First, it
would be transparent. Other than including the library and
using the widget, the programmer was shielded from the inner
workings of the library. Even metaphors were avoided so that
the programmer didn’t have to learn anything extra. A typical
widget is instantiated the same way as its extended class. For
example, in the following code snippet, adding “AP” to the
button constructor is the only real difference between a regular
Java button and an APWidgets button:

Figure 1. Widget name differences.

Second, the library reflects many audio ideas. Concepts
such as soundscapes, audio icons, earcons, and spearcons are
each defined classes which can be used to enhance the
application. As the science of auditory display progresses, this
library can reflect the new changes.

Third, the library is easily extensible. If the audio libraries
are insufficient, a programmer can change or extend the source
code.

Finally, the library is robust. The architecture depends on
tested third-party libraries for final rendering and the event
model for delivering sound trigger messages. Java was selected
since it has a strong cross-platform appeal.

3.2. Wiring for Sound

The new sound interpretation model differs from that of the
graphical model in Java. With visuals, a component is given a
Graphics object which can draw only in the bounds of the
component space. In order to reduce interference between
sounds, we built a system that operates on an event model.
When a widget wants to make a sound, it sends a request in the
form of a sound event. The sound event has sound settings that
specify the type of sound (such as MIDI or spearcon) and
parameters related to that type (such as words per minute). This
sound event is sent via a sound listener to the sound manager.
The sound manager ultimately determines what is played. The
sound manager then sends specific playback information to
MIDI, TTS, and waveform players. The sound manager is
threaded in order to manage multiple requests. Figure 1

describes the process of triggering a sound event.
APComponents inform their SoundListener with a SoundEvent
that contains SoundSettings, or details of the event. The
SoundServer, located in the APJFrame, receives these events. It
then informs the appropriate sound generation tools what to do.

When a programmer is developing his software, he does not
need to worry about the sound management. This entire process
is going on behind the scenes in the library. When new
components are added or changes are made to the user interface
class structure, a sound wiring class searches for components
that accept the sound listener and the wiring tool deploys a
sound listener there.

The SoundServer class acts as the sound manager. It could
easily be extended to accept new types of sounds as new ideas
develop. Its playback logic affects the user experience much
like a graphical user interface’s canvas: the layout, display, and
what is not displayed shape the aesthetic and usability qualities
of the system.

3.3. Sound Types

There are three basic types of sound playback supported:
waveform files, MIDI musical notation, and text-to-speech
(TTS). A more complex inheritance hierarchy exists in the
class structure, but this is basically how the notes will be
played.

The Talker TTS class supports plain TTS and spearcons.
Talker takes in a string and speech parameters and outputs a
spoken rendition of that text. It is limited to one voice,
provided by the FreeTTS library. Pitch range, volume, and
speed can be modified. Due to the nature of TTS processing,
the support libraries range from 10 to 100 Megabytes in size. In

JButton traditionalButton
= new JButton(“Visual Button”);

APJButton audioEnhancedButton= new
APJButton(“AudioVisual Button”);

Figure 2. The process of triggering a sound event.

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-5

order to facilitate flexible use of APWidgets, we decided to use
the lightweight and open source FreeTTS [28].

The SoundFile class contains the general waveform loading
and playback. Auditory Icons and Earcons are essentially a
predefined group of waveforms from a particular class of sound.
As mentioned earlier, Auditory Icons are context-aware sounds.
Earcons are context-free sounding, but contain structural
information such as the current location on a menu. From an
implementation standpoint, the only difference is the class of
sounds used.

Finally, APWidgets contains a few classes that manage
MIDI generation. The JFugue MIDI music library [27] renders
sound while the API provides tools for quickly generating a few
musical notes.

In all cases, the focus was to make specialized tools that
generate sound within a reasonable amount of time from when
the activity went off. Time-to-play of more than a few hundred
milliseconds was unacceptable, and the code was optimized
until we reached that standard.

3.4. Sound Widgets

APWidgets depends on the certain auditory concepts. While
the optimal strategy of implementing these ideas is disputable,
our goal was to create a reasonable starting implementation and
improve it over time. Earcons, auditory icons, and soundscapes
depend on prerecorded audio files for sound playback.
Spearcons and TTS depend on TTS playback. MIDI generation
was used for some nominal sounds.

All of the sound widgets are able to take a sound listener
and trigger a sound event when required. They inherit this
ability from an abstract APComponent class. All
APComponents accept wiring from the sound wire tool.

We note that our efforts in making sound-enhanced widgets
did not focus on accessibility at this time. The current design
was intended to bring basic and reasonable sound effects which
have led or could lead to improved user performance and
experience. Ongoing development includes accessibility
features, among others.

We have extended several standard Java Swing widgets.
The button, check box, scrollbar, slider, text component, and
text field changes add MIDI sounds to various actions. The
APJFrame acts as a container for the sound manager. The
wiring tool searches for children and further ancestry of the
APJFrame and adds listeners to the APComponent objects
found. APJMenu and APJMenuItem are implemented with
spearcons, but accept earcons and auditory icons as well. A
new widget, APJGriddedPanel, gives map-like coordinate
feedback to where the mouse is on the picture-panel.

4. USE EXAMPLE

This work emphasizes creating tools that enhance usability
while minimizing the cognitive load on the programmer. The
following Java code example displays both.

First, the APJFrame is initialized. This contains the sound
manager class and wiring tools. As widgets are added to the
frame, the frame checks (in the background) if they or their
children are audio enhanced components. If so, the sound
manager delivers a listener to the component so that it can
inform the manager of any sound events. After all of the
components are set up, a wiring call is made to double check
listener connections.

The primary difference between this code and a typical Java
Swing application without the sound are the wiring calls and the

“AP” before the component class names. If no wiring checks
are done, then the difference boils down to two letters for each
class. There are no concepts or even metaphors that the
programmer must learn in order to use the sound enhanced
toolkit.

Figure 3. An example of APWidgets in a program.

public class APWidgetsDriver {
public static void main(String[] args) {

// initialize the frame and SoundServer.
APJFrame frame = new APJFrame();

// menuing
APJMenuBar bar = new APJMenuBar(frame);
frame.setJMenuBar(bar);
APJMenu file = new APJMenu("File");
file.add(new APJMenuItem("New"));
file.add(new APJMenuItem("Open"));
file.add(new APJMenuItem("Exit"));
APJMenu edit = new APJMenu("Edit");
edit.add(new APJMenuItem("Cut"));
edit.add(new APJMenuItem("Copy"));
edit.add(new APJMenuItem("Paste"));
bar.add(file);
bar.add(edit);

// some extra components
APJButton button

= new APJButton("Just a button");
APJTextField text = new APJTextField();
JPanel southPanel = new JPanel();
southPanel.setLayout(new BorderLayout());
southPanel.add(button, BorderLayout.EAST);
southPanel.add(text, BorderLayout.CENTER);
frame.add(southPanel, BorderLayout.SOUTH);

// search from the button to the frame.
button.findSoundListener();

// gridded panel display
APJGriddedPanel drawingPane

= new APJGriddedPanel();
JLabel label = new JLabel();

// put in your image file here!
label.setIcon(

new ImageIcon("images/space.jpg"));
drawingPane.add(label);
JScrollPane scrollPane

= new JScrollPane(drawingPane);
scrollPane.setVerticalScrollBar(

new APJScrollBar());
scrollPane.setHorizontalScrollBar(

new APJScrollBar());

frame.add(scrollPane,

BorderLayout.CENTER);

// wrap it all up,
// including a sound wiring check.
frame.wireSoundSystem();
frame.setSize(new Dimension(1024, 768));
frame.setDefaultCloseOperation(

APJFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
}}

Proceedings of the 14th International Conference on Auditory Display, Paris, France, June 24-27, 2008

ICAD08-6

5. CONCLUSIONS

The APWidgets software library provides Java programmers a
way to implement audio widget ideas without the cost of
learning the academic and implementation concepts behind the
widgets.

AudioPlusWidgets is currently being evaluated on two
levels. First, end users are performing benchmark tasks, such as
map-searching, with both audio-enhanced and visual-only
interfaces. This is providing an evaluation of the utility of the
enhancements. Second, programmers are coding applications
using typical Java Swing widgets, and with the APWidgets
enhancements. This is allowing us to evaluate the usability of
APWidgets. Together, these kinds of evaluations will form the
next phase of this project, and results will be fed back into the
library development efforts.

This work on AudioPlusWidgets is part of a larger effort to
understand why auditory enhancements are still typically left
out of software, and what can be done about it. Future work
will include more evaluations of APWidgets, the development
of widgets that depend on audio-based user interaction, and a
comprehensive overview of how sounds are used in software. It
is our hope that these new tools will be adopted and
implemented widely, and expanded into a broadly supported
means of bringing the potential benefits of audio-enhanced
interfaces to great numbers of software applications.

6. REFERENCES

[1] T. Dougherty, "What Does Pink Sound Like?
Designing the Audio Interface for the TalOS," in
International Conference on Auditory Display, Palo
Alto, NM, USA, 1996.

[2] W. K. Edwards, E. D. Mynatt, and T. Rodriguez,
"The Mercator project: a nonvisual interface to the X
Window system," X Resour., pp. 33-53, 1993.

[3] P. Roth, L. S. Petrucci, A. Assimacopoulos, T. Pun,
"Audio-haptic Internet Browser and Associated Tools
for Blind and Visually Impaired Computer Users," in
Workshop on friendly exchanging through the net,
2000.

[4] T. Hermann, C. Niehus, and H. Ritter, "Interactive
Visualization and Sonification for Monitoring
Complex Processes," in International Conference on
Auditory Display, Boston, MA, 2003, pp. 247-250.

[5] S. Carla and B. C. Alan, "Using sound to extract
meaning from complex data," in Proceedings of SPIE,
1991, pp. 207-219.

[6] S. K. Lodha, J. Beahan, T. Heppe, A. Joseph, and B.
Zane-Ulman, "MUSE: A Musical Data Sonification
Toolkit," in International Conference on Auditory
Display, Palo Alto, NM, USA, 1997.

[7] B. S. Mauney and B. N. Walker, "Creating Functional
and Livable Soundscapes for Peripheral Monitoring
of Dynamic Data," in International Conference on
Auditory Display, Sydney, Australia, 2004.

[8] K. van den Doel and D. K. Pai, "JASS: A Java Audio
Synthesis System for Programmers," in International
Conference on Auditory Display, Espoo, Finland,
2001.

[9] B. L. Vercoe, "C-sound," Experimental Music Studio,
Media Laboratory, Massachusetts Institute of
Technology, Boston, MA 1985.

[10] Freedom Scientific, "JAWS for Windows Overview."
http://www.freedomscientific.com/fs_products/softwa
re_jaws.asp

[11] S. A. Brewster, P. C. Wright, and A. D. N. Edwards,
"An evaluation of earcons for use in auditory human-
computer interfaces," in Proceedings of the
INTERACT '93 and CHI '93 conference on Human
factors in computing systems Amsterdam, The
Netherlands: ACM, 1993.

[12] B. N. Walker, A. Nance, and J. Lindsay, "Spearcons:
Speech-based Earcons Improve Navigation
Performance in Auditory Menus," in International
Conference on Auditory Display, London, UK, 2006,
pp. 63-68.

[13] J. Lumsden and S. Brewster, "A Survey of Audio-
Related Knowledge Amongst Software Engineers
Developing Human-Computer Interfaces," Glasgow
University, Glasgow, England 2001.

[14] W. W. Gaver, "Auditory Icons: Using Sound in
Computer Interfaces," Human-Computer Interaction,
vol. 2, pp. 167-177, 1986.

[15] W. W. Gaver, "The SonicFinder: An Interface That
Uses Auditory Icons," Human-Computer Interaction,
vol. 4, pp. 67-94, 1989.

[16] M. M. Blattner, D. A. Sumikawa, and R. M.
Greenberg, "Earcons and Icons: Their Structure and
Common Design Principles," Human-Computer
Interaction, vol. 4, pp. 11-44, 1989.

[17] D. K. Palladino and B. N. Walker, "Learning Rates
for Auditory Menus Enhanced with Spearcons Versus
Earcons," in International Conference on Auditory
Display, Montreal, Canada, 2007, pp. 274-279.

[18] M. Ananya, R. C. Perry, and W. Ge, "TAPESTREA:
sound scene modeling by example," in ACM
SIGGRAPH 2006 Sketches Boston, Massachusetts:
ACM, 2006.

[19] J. Lumsden and S. Brewster, "Guidelines for Using
the Toolkit of Sonically-Enhanced Widgets,"
Glasgow University, Glasgow, Scotland 2001.

[20] J. Lumsden and S. Brewster, "Guidelines for Audio-
Enhancement of Graphical User Interface Widgets,"
in Proceedings of HCI, London, England, 2002.

[21] P. Yalla, "Advanced Auditory Menus," Georgia
Institute of Technology Tech Report, Atlanta October
2007.

[22] P. R. Cook, "Physically Informed Sonic Modeling
(PhISM): Synthesis of Percussive Sounds," Computer
Music Journal, vol. 21, 1997.

[23] MIDI Manufacturers Association Incorporated, "The
Technology of MIDI: MIDI Files."
http://www.midi.org/about-midi/abtmidi2.shtml

[24] S. Clarke, "Measuring API usability," in Dr. Dobbs
Journal, May 2004.

[25] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C.
I. Spinuzzi, "Building More Usable APIs," IEEE
Software, vol. 15, pp. 78-86, May 1998 1998.

[26] C. Bore and S. Bore, "Profiling Software API
Usability for Consumer Electronics," in International
Conference on Consumer Electronics, 2005, pp. 155-
156.

[27] D. Koelle, "JFugue," http://www.jfugue.org.
[28] S. M. L. Speech Integration Group, "FreeTTS,".

http://freetts.sourceforge.net/docs/index.php.

