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Determining patterns in data is an important and often difficult task for scientists and students.
Unfortunately, graphing and analysis software typically is largely inaccessible to users with vi-
sion impairment. Using sound to represent data (i.e., sonification or auditory graphs) can make
data analysis more accessible; however, there are few guidelines for designing such displays for
maximum effectiveness. One crucial yet understudied design issue is exactly how changes in
data (e.g., temperature) are mapped onto changes in sound (e.g., pitch), and how this may de-
pend on the specific user. In this study, magnitude estimation was used to determine preferred
data-to-display mappings, polarities, and psychophysical scaling functions relating data values to
underlying acoustic parameters (frequency, tempo, or modulation index) for blind and visually im-
paired listeners. The resulting polarities and scaling functions are compared to previous results
with sighted participants. There was general agreement about polarities obtained with the two
listener populations, with some notable exceptions. There was also evidence for strong similarities
regarding the magnitudes of the slopes of the scaling functions, again with some notable differ-
ences. For maximum effectiveness, sonification software designers will need to consider carefully
their intended users’ vision abilities. Practical implications and limitations are discussed.
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1. INTRODUCTION

Determining patterns in data is a primary activity for scientists and students.
As datasets are becoming increasingly large and complex, making successful
scientific exploration is an ever-increasing challenge. There are many software
tools available for exploring and analyzing data; however, they are almost ex-
clusively visual in nature. Such programs do not provide a means for blind and
visually impaired students and researchers to participate fully in the scientific
endeavor.

Sonification, the use of nonspeech audio to display data, can provide crucial
data analysis tools for all researchers, not only those who are unable to use
visual plots and graphs (see Kramer et al. [1999], Nees and Walker [2009],
Walker and Kramer [2006]). Example domains include the detection of tu-
mors (e.g., Martins and Rangayyan [1997]), mining of stock market data (e.g.,
Nesbitt and Barrass [2002]), exploration of weather data (e.g., Flowers and
Grafel [2002]), interaction with geo-spatial data. [Zhao 2005], and study of
engineering data for construction (e.g., Valenzuela et al. [1997]). Encourag-
ingly, work by Brewster [2002] and Brown et al. [2002] demonstrates that
blind and vision-impaired individuals can successfully access information from
sonified line graphs, both with single [Brewster 2002] and multiple data se-
ries [Brown et al. 2002]. Alty and Rigas [1998] also showed that blind users
are able to obtain spatial information from graphical shapes through non-
speech sounds (i.e., music). They also found that the context in which the
music was presented helped the user obtain more information to better iden-
tify the shapes presented in the space. In fact, recognition of the potential
utility of sound as a data-display medium has led to software packages that
can produce different types of simple “auditory graphs”, which are sometimes
very useful (even intended) for assisting blind and visually impaired students
and scientists. Examples of such software include Triangle [Gardner et al.
1996], the Accessible Graphing Calculator (AGC) [Gardner 1999], the Math
Description Engine (MDE) Graphing Calculator [NASA Information Access
Lab 2004], the Sonification Sandbox [Davison and Walker 2007; Walker and
Cothran 2003; Walker and Lowey 2004], and the vOICe Accessible Graphing
Calculator [Meijer 2004].

However, to ensure that sonification and auditory graphs are useful and
effective, the auditory display designer must consider, among other issues, the
perceptual and cognitive expectancies of the end-user, that is, the listener, and
not make design decisions based solely on what sounds “good” or “intuitive” to
the designer [Walker 2002; Walker and Kramer 2005; Wickens et al. 2004].
This may be especially true if the designer happens to be sighted, and the
intended listeners are blind or visually impaired.
ACM Transactions on Accessible Computing, Vol. 2, No. 3, Article 12, Pub. date: March 2010.
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In creating a sonification or an auditory graph, the values in a dataset
are often used to vary an acoustic display parameter, such as frequency
(pitch), amplitude (loudness), timbre, or tempo, which is intended to repre-
sent, or display, the data values. An important issue is the best mapping of
data values to the available display (sound) dimensions. While frequency
is the most commonly used dimension, Walker [2002; 2007] has pointed
out that different sound dimensions are better for representing certain data
types. For example, in studies with sighted college students, Walker [2002;
2007] and Walker and Kramer [2005] have found that frequency is better
for representing temperature, but tempo may be better for size. Next, given
a specific mapping, the sonification designer needs to select a polarity and
scaling. Polarity refers to how the data dimension and the display dimension
covary. If a data dimension (e.g., temperature) increases, a positive polarity
would dictate that such a change be represented by a corresponding increase
in the assigned display dimension (e.g., increasing frequency) (i.e., as tem-
perature rises the frequency of the sound gets higher). A negative polarity
would dictate that such a change be represented by a corresponding decrease
in the assigned display dimension (i.e., as temperature rises the frequency
gets lower). Scaling refers to how much change in a data dimension is
represented by a given change in the display dimension, which is the equiv-
alent of the slope of a line on a visual graph. The “best” scaling value for
representing data with sound can depend on the exact type of data and
display dimensions in use (e.g., Edworthy et al. [1995; 1991], Hellier
et al. [2002], Walker [2002; 2007]). This means that there will be different
scaling factors for, say, dollars, temperature, or urgency, when mapped onto
frequency. The use of the most preferred parameters should, overall, lead
to better performance with an auditory graph or sonification [Neuhoff and
Wayand 2002; Walker 2002]. There is no “master” list of such preferred
data-to-sound mappings because most of the research done in this field has
been with sighted undergraduate students in a limited selection of situa-
tions. However, a wider variety of situations and users (e.g., visually impaired,
noncollege users, various cultures and ages) should clearly be studied in or-
der to gain a more comprehensive knowledge base that could be used to create
such a list.

The psychophysics research paradigm of magnitude estimation (see, e.g.,
Gescheider [1997], Hellier et al. [1995], Stevens [1975]) is often used to deter-
mine the function representing how observers perceive changes in a physical
attribute of a stimulus. Magnitude estimation is an effective way to determine
both the polarity and the ratio of physical stimulus change to perceived change
(the interested reader is referred to Walker [2007] for a discussion of magni-
tude estimation as it relates to auditory graphs and sonification). The proce-
dure can result in a mathematical function (often a power function) relating
the perceived “temperature” to the actual sound frequency. The slope of the
line in that function indicates how much change in frequency is required to
represent a given change in, say, temperature. If a doubling of frequency re-
sults in a perceived doubling of temperature, then the slope of the function,
or scaling factor, would be 1.0. If a doubling of frequency yields less than a
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doubling in perceived temperature, then the slope of the line would be less
than 1.0. The polarity comes from the sign of the slope (e.g., a negative slope
means a negative polarity).

We have discussed various researchers who demonstrate that sighted and
vision-impaired individuals do understand auditory graphs and sonifications.
However, as mentioned earlier, the design of auditory displays is often based
on decisions of the programmer and not on research. This is where magnitude
estimation comes into play; we can use magnitude estimation as a study tool
to learn about how people “intuitively” or “naturally” interpret various types
of auditory information, which we can, in turn, use to design better auditory
displays.

Walker [2002; 2007] has used magnitude estimation with sighted listeners
to determine preferred mapping, polarity, and scaling values for several data
and display mappings. In addition to charting out the preferred polarities for
several data-to-display mappings, Walker [2002; 2007] has found the perhaps
surprising result that the actual slope of the scaling function depends on both
the sound attribute that is being varied, and the type of data that the sound
is supposed to represent. That is, it matters not only how one changes the
sound, but also what one calls it (such as temperature, velocity, or number
of dollars). Participants who were told that some sounds represented “pres-
sure” yielded slopes that were different from the slopes for participants who
heard exactly the same sounds, but were told that they represented “temper-
ature.” This has significant implications for the design of sonifications and
auditory graphs, since the actual nature of the data being displayed must be
factored in. One size apparently does not fit all, both in terms of listeners and
datasets.

To date, virtually all of the results in this line of research [Walker 2002;
2007; Walker and Kramer 2005] have been obtained with sighted college stu-
dents. It is important to continue to replicate and expand the findings in that
population. However, it is also critical to determine the preferences of other
populations, particularly blind and visually impaired listeners, who are becom-
ing a larger constituency of sonification consumers. It is not possible to predict
in advance if, or how, the mappings, polarities, and scaling functions deter-
mined with visually impaired participants might differ from those obtained
with sighted students. There are no theories to predict any differences a pri-
ori, although one could postulate differences in the way sound is used to distill
information about the environment, or differences in how math and science
education affects the perception of data in different populations. Empirical
results are critical, so that sonification design can proceed on a foundation of
scientific evidence.

If the results regarding the preferred polarities and the actual slope values
are similar across populations, then development of sonification software may
require only one set of synthesis algorithms. However, if different slopes or
polarities arise, then auditory display designers and software developers will
certainly need to take the broader findings into account. Regardless, the spe-
cific needs of visually impaired users must be considered when developing any
sonification software.
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2. METHODS

This study replicated the procedure that has been used by Walker [2002; 2007],
but in this case including blind and visually impaired participants.

2.1 Blind and Visually Impaired Participants

A total of 45 blind and visually impaired youths and adults participated, hav-
ing been recruited from three organizations. Fifteen participants were adult
employees of the Lighthouse of Houston (6 male, 9 female; mean age 37.8
years, range 23–53 years). Another 15 participants were youths from the Texas
School for the Blind and Visually Impaired (TSBVI) in Austin (11 male, 4 fe-
male; mean age 17.5 years, range 12–21 years). The final 15 participants were
employees or clients of the Center for the Visually Impaired (CVI) in Atlanta
(6 male, 9 female; mean age 46.6 years, range 28–64 years). This led to a to-
tal of 23 male and 22 female participants (overall mean age 34.0 years, range
12–64 years). All participants were legally blind (and so we will use the term
“blind” for the remainder of this report to refer to all participants), though
there was some variability in actual self-reported visual perception. All par-
ticipants reported normal hearing, except one male teenager, who reported
normal hearing in one ear and some hearing loss in the other ear.

Every participant in this experiment provided signed informed consent,
with a sighted assistant reading the consent forms to all of the blind partic-
ipants, and helping them as needed to sign the consent form. The research
protocols were approved by the Institutional Review Board (IRB) of Rice Uni-
versity, of the TSBVI, and of the Georgia Institute of Technology.

2.2 Sighted Undergraduate Data

The data from the blind participants in this study were compared to the ex-
tensive dataset obtained by Walker [2007]. For that report, 435 sighted under-
graduates with an average age of 20.9 years provided magnitude estimation
polarities and slopes using the same stimuli and procedure as was used in the
present study. The data from sighted participants were collected in two back-
to-back experiments, in a test of the stability of replicating such a magnitude
estimation procedure using conceptual data dimensions. To serve as a compar-
ison for the current data, an excerpt of the data from Experiment 1 in Walker
[2007] is provided in Table II. Full details are available in the original reports
[Walker 2002; 2007].

2.3 Apparatus and Stimuli

The sounds in this study were presented via headphones connected to a
computer that displayed the instructions. The headphones used were Sony
MDR-V200 (used at TSBVI and the Lighthouse) and Sony MDR-7506 (used at
CVI). The computers used to generate the sounds were Apple Macintosh G4
computers with 17-inch studio display monitors (used at TSBVI and the Light-
house) and an Apple Macintosh Power Book G4 laptop computer (used at CVI).
The experiment was written in HTML and JavaScript and ran in Netscape
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Navigator 4.6 on Macintosh OS 8.6 (used at TSBVI and the Lighthouse) and
in Netscape Navigator 4.7 on Macintosh OS 9.2 (used at CVI).

This study employed three sets of sound stimuli synthesized in 16-bit, 44.1
kHz using Csound to create AIFF files. The 10 sounds in the frequency set were
sine tones each 1 s in duration, synthesized at frequencies of 90, 205, 320, 415,
790, 1000, 1350, 1750, 2410, and 3200 Hz. The 10 stimuli in the tempo set were
each patterns of one beat of sound followed by one-half beat of silence. They
were synthesized with a tone frequency of 1000 Hz and were repeated at tem-
pos 41, 60, 107, 167, 203, 270, 415, 505, 572, 685, beats per minute (bpm). The
third set, the modulation index set, was composed of 1-s long FM-synthesized
sounds each with a carrier frequency of 100 Hz, a modulation frequency of 300
Hz, and a modulation index (i.e., number of harmonics) of 1, 2, 3, 4, 5, 6, 7,
8, 9, or 10. Increasing the modulation index has the effect of increasing the
perceived “brightness” or spectral centroid of the sound. Through pretesting,
all sounds within a set were equated for apparent loudness.

Participants made conceptual magnitude estimates of the temperature,
pressure, velocity, size, and number of dollars that the sounds seemed to rep-
resent. All data was saved to text files for later analyses.

2.4 Procedure

Each listener participated in three blocks of trials, one for each of the three
stimulus sets, with the blocks presented in irregular order. In one block of
trials, participants responded to the sounds from the frequency set, one sound
at a time. In a separate block of trials, participants responded to the tempo
set. In a third block participants responded to the stimuli in the modulation
index set. The 10 sounds from each of the stimulus sets were presented twice
each in random order for a total of 20 trials per block.

The standard method of modulus-free magnitude estimation was used (see,
e.g., Hellier et al. [1995], Stevens [1975], Walker [2002; 2007]. Since a modu-
lus is a number to which the first stimulus should be associated, the method
of modulus-free magnitude estimation allows the participant, and not the ex-
perimenter, to set the value for the first stimulus as well as all the remain-
ing stimuli. On each trial, one of the sounds was presented via headphones
connected to a computer, and the participant responded to that sound with a
number that he or she felt estimated the value of the data dimension in use
during that block. For example, the participant might listen to sounds of dif-
ferent frequencies, and indicate what “temperature” each sound represented.
Here is an example of the instructions given to the participants.

You will hear a series of sounds, one at a time, in random order.
Your task is to indicate what size they would represent, by assign-
ing numbers to them. For the first sound, assign it any number of
your choosing that represents size. Then, for each of the remaining
sounds, estimate its “size”, relative to your impression of the first
sound. For example, if the second sound seems to represent size
that is 10 times that of the first, then assign it a number that is 10
times the first number. If the sound seems to represent size that is
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one-fifth the size of the first, assign it a number that is one-fifth the
first number, and so on. You can use any range of numbers, frac-
tions, or decimals that seem appropriate, as long as they are greater
than zero.

As indicated in the preceding example instructions, the only range anchors
given to participants was that their answers had to be greater than zero.

All participants, sighted and blind, were tested individually. The proce-
dure for the blind and sighted participants differed only in that sighted partic-
ipants used the computer themselves to play the sounds and enter their own
responses; a sighted assistant helped the blind participants interact with the
system to perform these tasks.

3. ANALYSES AND RESULTS

3.1 Preanalysis

First, the data from the three subgroups of blind participants (TSBVI, Light-
house, and CVI) were analyzed separately. A two-way univariate analysis of
variance (ANOVA), with an alpha level of 0.05, was used to analyze the data.
The ANOVA used the between-subjects factors of group (TSBVI, Lighthouse,
CVI) and mapping (e.g., frequency:temperature, tempo:size, etc.), and the de-
pendent variable was ranked slope value. There was no significant main effect
of group [F(2, 17) = 1.332, p = .290] or mapping [F(14, 17) = .294, p = .987].
There was also no interaction between the two independent variables [F(27,
17) = .419, p = .979]. This analysis of the data revealed no obvious differences
between the groups. Next, the overall combined dataset was split by age of
blindness onset into early and late. Late onset (n = 15) was operationalized as
participants who became blind at 18 years of age or later, or participants who
had gone through school with vision and thus had some familiarity with visual
graphing techniques typically used in schools and society at large. This expe-
rience with visual representations of data may cause them to respond differ-
ently from early-onset blind participants when asked about how data “should
be” represented. The other participants, who became blind before the age of
18, were categorized as early onset (n = 28). It should be noted that it may
also have been possible to consider a third subgroup, namely, participants who
were blind since birth. However, since our reasons for looking at the early/late-
onset distinction was related to experience with visual representations, we did
not distinguish in our demographics how many of the early-onset participants
were congenitally blind (some were). Regardless, our sample did not contain
enough participants in this category to form any viable comparisons. Thus,
we maintained the two-group (early/late-onset) distinction. Again, while even
these subgroups were too small to make any statistical inferences, an inspec-
tion of the results showed the two groups were very similar. Indeed, there was
only one case where the early-onset and late-onset groups may have differed.
When frequency was used to represent number of dollars, the early-onset blind
participants favored a negative polarity, whereas the late-onset participants
favored a positive polarity. The possible implications of this are discussed
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Table I. Summary of Psychophysical Scaling Slopes with Blind Listeners

Display dimension Number of participants in each cell (n), Slope of regression line
Size Temperature Pressure Velocity Dollars

Frequency n slope n slope n slope n slope n slope
Positive Polarity 4 0.66 10 0.64 5 0.47 7 0.78 3 1.43
“No” Polarity 0 1 1 1 1
Negative Polarity 4 –0.62 0 – 2 –0.38 2 –0.23 4 –0.64
Total 8 11 8 10 8

Tempo
Positive Polarity 6 0.44 6 0.50 8 0.72 9 0.83 9 0.81
“No” Polarity 1 1 0 0 0
Negative Polarity 1 –0.83 2 –0.31 2 –0.30 1 –0.68 1 –0.44
Total 8 9 10 10 10

Modulation Index
Positive Polarity 6 0.60 6 0.47 4 0.59 7 0.61 5 0.56
“No” Polarity 2 0 1 0 2
Negative Polarity 1 –0.11 2 –0.43 1 –0.96 2 –0.19 3 –0.43
Total 9 8 6 9 10

later in the article, along with the other results. Given that there were no
systematic subgroup differences in the data, all of the data from blind partici-
pants were finally grouped together for the subsequent analyses.

3.2 Individual Analyses of Polarity

Polarity is not typically a critical issue for visual graphs of data, but it can be
very important in auditory representations. Within a block, most individual
participants apply a consistent mapping polarity (be it positive or negative),
and make fairly monotonic responses, so that, for example, low frequencies
are given lower numbers and higher frequencies are given higher numbers (or
vice versa). In order to separate the positive polarity responses from the neg-
ative polarity responses in an algorithmic manner, we used the three polarity
categories that have previously been defined: “positive”, “negative”, and “no”
polarity (see Walker [2000; 2002] for more details). For each listener in each
block the Pearson correlation coefficient was computed between the log of the
responses (e.g., estimated temperature values) and the log of the actual stimu-
lus values (e.g., frequencies). Data from a specific participant in a given block
were considered to have “no” polarity, and were not used in subsequent slope
analyses, if the absolute value of the correlation coefficient in that block did
not reach conventional levels of statistical significance (rcritical = 0.444, df = 18,
α = 0.05). Stated another way, if the slope of the scaling function was neither
positive nor negative, there was “no” polarity. “No” polarity data indicates that
either the participant always gave the same or near-same response to what-
ever sound they heard, or responded in an unsystematic or random manner.
These participants either could not distinguish the differences in the sounds,
did not understand the experiment, or were not completing the task as in-
structed. Using this approach, the data in the present study were sorted into
positive, negative, and “no” polarity groups for subsequent analyses. These
groups are represented in Table I. All 45 participants were included in the
analysis, despite the occasional removal of “no” polarity data.
ACM Transactions on Accessible Computing, Vol. 2, No. 3, Article 12, Pub. date: March 2010.
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Fig. 1. Temperature estimation versus sound frequency, for visually impaired listeners. The
equation of the fit line is shown on the graph. The slope of the fit line represents the scaling factor
between frequency of the sounds and the estimated temperature those sounds represent. Note
that the positive slope means that this mapping exhibits a positive polarity.

3.3 Aggregate Analyses of Slope

Within each data-to-display pairing and polarity, the data were resorted by
stimulus value (e.g., the frequency). Geometric means were calculated for all
judgments of a given stimulus, collapsing across participants in a given data
and display pair. Geometric means help adjust for different response ranges
[Stevens 1975]. These mean estimation values were plotted against the actual
stimulus values in log-log coordinates, and fitted with a power function of the
form y = b xm. The exponent, m, which is also the slope of the fit line, indicates
how much the perceived or estimated value changes as the actual stimulus
parameter changes. As an example of the result of these analyses, Figure 1
contains the psychophysical scaling plot for the estimations of temperature for
blind listeners; that is, the amount that the perceived temperature changed as
a function of the actual frequency change.

This plot is representative of the results obtained for each of the data-to-
display mappings, though the polarities and actual slopes varied for the dif-
ferent mappings. For each data-to-display mapping a slope was determined
(including both positive and negative slopes, where obtained), along with the
number of listeners whose data contributed to each slope. These data are in-
cluded in Table I.

If both polarities were obtained within a mapping, the majority polarity
was defined as greater than 50% of all participants in that block, including the
“no” polarity responses (see Walker [2002]). For example, if 6 participants re-
sponded with a positive polarity, and 5 responded with a negative polarity, then
the positive polarity would be considered as the majority (6 out of 11). How-
ever, if there were also two “no” polarities (for a total of 13 participants), that
would mean there was no majority for that block. The reasoning behind this
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Table II. Summary of Psychophysical Scaling Slopes with Sighted Listeners from Walker
[2007, Experiment 1]

Display dimension Number of participants in each cell (n), Slope of regression line
Size Temperature Pressure Velocity Dollars

Frequency n slope n slope n slope n slope n slope
Positive Polarity 9 0.66 11 0.65 13 0.77 18 0.77 9 1.36
“No” Polarity 0 2 3 1 2
Negative Polarity 10 –0.87 6 –0.59 3 –0.96 0 – 8 –1.09
Total 19 19 19 19 19

Tempo
Positive Polarity 9 0.87 12 0.63 10 0.84 17 0.90 14 1.07
“No” Polarity 1 2 3 1 2
Negative Polarity 9 –0.77 5 –0.76 6 –0.74 1 –1.29 5 –1.12
Total 19 19 19 19 21

Modulation Index
Positive Polarity 9 0.69 14 0.62 17 0.69 17 0.67 12 0.69
“No” Polarity 1 0 0 0 1
Negative Polarity 9 –0.65 6 –0.48 2 –0.20 2 –0.34 6 –1.03
Total 19 20 19 19 19

approach is to attempt to determine a “preferred” polarity among the group
of participants whenever possible, while at the same time acknowledging that
there may not be a unanimous polarity for a given data-to-display pairing. In
the practical case of sonification design, an ambiguous or no-majority polarity
situation would warrant careful consideration of another mapping, or might
indicate the need to explicitly train listeners on how to interpret the display
(should such training be effective).

3.4 Summary of Polarity and Slope Results

Table I summarizes the slopes of all of the scaling functions determined in
this experiment with blind participants, as well as the number of participants
responding with a given polarity. Table II summarizes the relevant slopes and
numbers of participants for the sighted listeners from Experiment 1 of Walker
[2007]. In both tables, note that a negative slope indicates a negative polarity.
That is, an increase in the display dimension (e.g., an increase in frequency)
represents a decrease in the data dimension (e.g., a decrease in size).

3.5 Pattern of Results for Polarity

As was pointed out in the Introduction, it is important to determine first the
appropriate polarity of a data-to-sound mapping. This comes primarily from
the number of participants who respond to a given mapping with a positive
or negative polarity. While the number of blind participants was considerably
smaller than the number of sighted participants in Walker [2007], which lim-
its the conclusions that can be drawn at this point, the results presented in
Tables I and II do have some interesting highlights.

First and foremost, in most cases, the polarity used by the majority of par-
ticipants for a given data and display dimension pair was the same for both
sighted and blind participants. Overall, there was a highly significant corre-
lation between the number of sighted participants responding with a given
ACM Transactions on Accessible Computing, Vol. 2, No. 3, Article 12, Pub. date: March 2010.
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Fig. 2. Correlation between number of respondents in each polarity, for corresponding mappings,
from blind listeners in the current study and sighted participants in Walker [2007]. The Pearson
correlation between the two series is r = 0.818, p < .001. Note a few points that lie relatively far
from the regression line through the data. Those points represent data-to-display mappings where
sighted and blind listeners responded somewhat differently. See the text for more discussion.

polarity and the number of blind participants responding with the same polar-
ity for a given mapping (r = 0.818, p < .001; see Figure 2).

This indicates that in general there are strong similarities between the pre-
ferred polarities shown by sighted and blind listeners.

Notable exceptions include the frequency:temperature, tempo:size, tempo:
dollars, modulation index:size, and possibly frequency: dollars mappings (com-
pare Tables I and II). For the first four of these mappings, the key difference
between the groups was that the blind participants responded with nearly
unanimous positive polarities, whereas the sighted participant groups each
had both positive and negative polarities represented in significant numbers.
This can be contrasted with, for example, the frequency:size mapping where
both sighted and blind participants responded with approximately even posi-
tive and negative polarities, or the tempo:velocity mapping, where both groups
responded with nearly unanimous positive polarity.

For the frequency:dollars mapping in the overall results, the difference in
how blind versus sighted listeners interpret the relationship is slight and with
additional participants it could change either way. However, interpreting the
data that we have, it is perhaps more interesting when the blind participants
are divided into early- and late-onset subgroups. As mentioned before, in this
mapping early-onset blind listeners preferred the negative polarity (1 positive
versus 4 negative), whereas late-onset blind listeners preferred the positive
polarity (2 positive versus 0 negative). Thus, it seems that in this particu-
lar mapping the late-onset participants respond more like the sighted partici-
pants, and less like the early-onset blind participants. This finding is discussed
more later.
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Fig. 3. Correlation between slopes in each polarity, for corresponding mappings, from blind lis-
teners in the current study and sighted participants in Walker [2007]. Slopes were only included
in the analysis (and plot) if 3 or more participants contributed values to that cell. The resulting
Pearson correlation coefficient between the two series is r = 0.963, p < .001.

3.6 Pattern of Results for Slope

In addition to using the appropriate polarity for a data-to-display mapping,
the correct scaling factor needs to be determined to maximize the match be-
tween the listener’s expectation and the actual sounds presented in an audi-
tory graph. It is important to know if blind listeners yield scaling functions
(slopes) similar to those obtained with sighted listeners.

Tables I and II list the exact slope values obtained with blind and sighted
listeners, respectively. It is clear that there are differences between the slopes
for different data-to-display mappings. This confirms previous results [Walker
2002; Walker and Kramer 2005] that indicate the need to use different scaling
functions when designing sonifications that represent different data types.

In addition to examining the specific slopes within a given group of listen-
ers, it is interesting to consider how the overall pattern of responses compares
between the two populations. Again, the small sample size for the visually im-
paired group limits the generalizations that can be made here, but these data
do contain some interesting findings. Figure 3 compares the slopes obtained in
corresponding mappings, for the sighted and blind participants described here.

Since the slopes are derived from geometric means computed across the sub-
jects within a mapping type, the means derived from only one or two partic-
ipants are not very stable. For that reason, and as a compromise due to the
small group of visually impaired participants, Figure 3 only presents those
slopes that were based on three or more participants’ data.

With a minimum of three participants per cell, the correlation between the
slopes for sighted and visually impaired participant groups is highly signifi-
cant, r = 0.963, p < .001. In other words, there is general agreement between
the two groups as to how much change (and in which direction) is required in
ACM Transactions on Accessible Computing, Vol. 2, No. 3, Article 12, Pub. date: March 2010.
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a given mapping. This applies not only to the “central” mappings with slope
values in the typical 0.5–0.9 range, but also to the “large slope” mappings such
as frequency:dollars, with slopes from both listener groups in the +1.4 range.
While the slope values are, overall, highly correlated, the values are often not
exactly the same. In most cases this is attributable to uncertainty in the mea-
surement (see Walker [2007]). However, in some cases there is a large differ-
ence in slope values that is not likely attributable to measurement error. One
such example is the modulation index:dollars (negative polarity) mapping, in
which the slope from sighted participants is more than double the correspond-
ing slope from blind listeners.

4. DISCUSSION

The first point to raise is that a psychophysical method often used to gather
data from sighted participants (the magnitude estimation procedure) was suc-
cessfully applied to gather data from blind participants. There were no dif-
ferences between the three subgroups of blind participants, which allowed us
to collapse their data for comparison to sighted listeners. Overall, the data
from blind participants were very similar to the data from sighted partici-
pants, with a few exceptions. In terms of polarity, sighted participants seem
to exhibit more split polarities than blind participants. In the case of the fre-
quency:dollars mapping, given the limits of the data collected here, blind and
sighted participants seem to respond with opposite majority polarities.

As discussed, there are no predictive theories about why blind or visually
impaired listeners might prefer different polarities than sighted listeners. The
closest one may come is to offer what seems a plausible explanation, once
differences are found. Consider, for example, the frequency:dollars mapping.
Given the difference in responses between sighted and blind listeners (though
that requires further study), it would be reasonable to assert that sighted par-
ticipants likely have never thought about how a somewhat abstract concept
like money should be represented by sound. If they have no actual perceptual
experience with sounds being related to dollars or money, sighted listeners
may rely on their experiences with visual graphs, and may simply resort to a
default positive polarity, due to the general usage of positive polarities in vi-
sual graphs. This is, in fact, the kind of anecdotal explanation we have often
heard from sighted participants. In contrast, visually impaired listeners are
likely to be more in tune with the everyday sounds of money itself. Indeed,
one blind participant “justified” or explained her responses by noting that a
coin dropped on a table makes a high-pitched clink, whereas a roll of quarters
makes a clunk, and a bag of coins makes a lower-pitched thud, leading to the
negative polarity for the frequency: dollars mapping. This real-life perceptual
experience may drive polarity preferences even more for those blind listen-
ers who are not familiar with default visual graphing techniques (i.e., for the
early-onset blind participants).

It should be perfectly apparent that any such attempts to explain a mapping
are just post hoc rationalizations, and may have absolutely nothing to do with
what the listeners are really thinking about (although the previous example is
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based on comments from a blind participant). As mentioned, the only reliable
way forward is to gather representative data and see what preferred polarities
emerge.

In the cases where sighted participants show a split polarity, it is important
to consider both possible interpretations of a sonification or auditory graph.
That is, a display designer may have intended the increasing tempo to rep-
resent increasing size, but half the sighted listeners may interpret increasing
tempo to mean decreasing size. As a result, the designer needs to know the
specific population stereotypes of the intended listeners, and either design to
match them, or provide explicit instructions or training to attempt to match
listener expectations to the intended message in a display. It is also important
to consider when a blind person lost his or her vision, since that may also play
a role in interpreting sonifications.

In the current study, the combination of an overall similarity in response
patterns and the presence of some differences in preferred polarities under-
scores the importance of having visually impaired listeners participate in this
line of research. It appears that not only the data and display dimensions, but
also whether the listener is sighted or not, may need to be factored into any
sonifications realistically intended for visually impaired listeners. Further, it
appears that, at least in some cases, late-onset blind participants obtain some
experience with visual graphs and, perhaps as a result, may prefer a more
visuo-centric, Cartesian-like mapping approach. On the other hand, early-
onset blind listeners seem to respond differently, perhaps from not having had
the experience with graphs and visual data representations. So, knowing one’s
users may mean more than just “sighted” or “blind”: a listener’s specific expe-
rience with data representation may play an important role in setting expec-
tations about how data should be represented with sound. Further research is
clearly needed in this interesting question.

Once the mapping and polarity are decided upon, the scaling between the
display and data dimensions needs to be chosen. The slopes of the magni-
tude estimation plots are the best starting point at present. The fact that
there is very good agreement between sighted and blind participants makes
this aspect of the auditory display design task much easier. However, as with
polarity, there remain some important differences between the two listening
populations, which need to be considered in any real applications. The data in
Table I may serve as a starting point.

Although these results will need to be replicated and extended with a larger
set of participants, and for a broader selection of data and display dimensions,
the initial implication is that there are many similarities, with a few major dif-
ferences, in the way visually impaired and sighted listeners consider sounds to
represent data. Simply designing for sighted users will presumably not yield
the highest level of comprehension, and therefore effectiveness, of sonifications
when used by researchers and students with vision disabilities. Continued ex-
perimentation in this area should lead quite quickly to even more effective and
valid recommendations for sonifications and auditory displays (e.g., Walker
and Nees [2008]) that will greatly assist both visually impaired and sighted
students and scientists.
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