
Human-Computer Interface Development:
Concepts and Systems for Its Management

H. REX HARTSON and DEBORAH HIX

Deportment of Computer Science, Virginia Polytechnic Institute and State Uniuersity,
Blacksburg, Virginia 24061

Human-computer interface momgement, from a computer science viewpoint, focuses
on the process of developing quality human-computer interfaces. including their
representation, design, implementation, execution, evaluation, and maintenance. This
survey presents important concepts of interface management: dialogue independence,
~tmctural modeling, representation, interactive tools, rapid prototyping, development
methodologies, and control structures. Dialogue independence is the keystone concept
upon which all the other concepts depend. It is a characteristic that separates design of
the interface from design afthe computational component of an application system so
that modifications in either tend not to cause changes in the other. The role of a dialogue
developer, whose main purpxe is to create quality interfaces, is a direct result of the
dialogue independence concept. Structural models of the human-computer interface serve
as frameworks for understanding the elements of interfaces and for guiding the dialogue
developer in their construction. Representation of Ihe human-computer interface is
accomplished by a variety of notational schemes for describing the interface. Numerous
kinds of interactive tools fw human-computer interface development free the dialogue
developer from much of the tedium of “coding” dialogue. The early ability to observe
behavior of the interface--and indeed that of the whole application system--provided by
rapidprototyping increases communication among system designers, implementers,
evaluators, and end-users. Methodologies for interactive system development consider
interface management to be an integral part of the overall development process and give
emphasis to evaluation in the development life cycle. Finally, several types of control
structures govern how sequencing among dialogue and computational components is
designed and executed. Numerous systems for human-computer interface management
are presented to illustrate these concepts.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications-languages; methodologies; tools; D.2.2 [Software Engineering]: Tools
and Techniques--modules and interfmes; structured programming; top-doun
programming; user interfaces: D.2.9 [Software Engineering]: Management-life cycle;
D.3.2 [Programming Languages]: Language Classifications; D.3.4 [Programming
Languages]: Processors; H.1.2 [Models and Principles]: User/Machine Systems-
human factors: 1.3.6 [Computer Graphics]: Methodology and Techniques; K.&l
[Management of Computing and Information Systems]: Project and People
Management; K.6.3 [Management of Computing and Information Systems]:
Software Management

General Terms: Design. Human Factors. Management, Theory

Additional Key Words and Phrases: Dialogue developer. dialogue independence, dialogue
management, human-computer dialogue. human-computer interface, human-computer
interface msnagemenf interface management, user interface management systems. UIMS

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise. or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360.O~OO,S~,O~OO-0005 $1.50

. H. R. Hartson and D. Hix

CONTENTS

Dialogue
3.3 Tech”iq”es for Representation of

6. METiioDOLOGIES’FOR INTERACTIVE
SYSTEM DEVELOPMENT

7. CONTROL STR”CT”RES FOR HUMAN-
COMP”TER INTERFACE MANAGEMENT

-

As we grow mxe familiar with the intelligent environment, and learn to converse with it
from the time we leave the cradle, we will begin to use computers with a grace and
naturalness that is hard for us to imagine today. And they will help all of us--not just
a few “super-technocrats”-to think more deeply about ourselves and the world.

INTRODUCTION

As the “Gestalt of the computer” [Rosen-
burg 19741 becomes more pervasive in our
society, the key to the real effectiveness of
computers is usability by people other than
computer professionals. As the above quo-
tation suggests, the possibilities of this
amazing machine are limited not by its
power to compute, but rather by its power

to communicate with its human users. Rel-
ative to advances in approaches to software
design, the important issue of human-
computer interface development has begun
to be addressed only recently. The increas-
ing interest in this area has been diverse
and, at times, disorganized. Although many
researchers have proposed viable solutions
to specific issues, these issues have gener-
ally been addressed without a framework

ACM Computing surveys, “0,. 2,. No. 1. March ,989

Human-Computer Interface Deuelopment . 7

or a broader strategy for managing the
whole development of human-computer
interfaces.

A key to building such a framework lies
in reassessing the entire software develop-
ment process, with particular emphasis on
development of the human-computer in-
terface as an integrated part of that process.
That reassessment has begun, and this
article identifies and examines the major
concepts in human-computer interface
management that have emerged. It uses
specific systems to illustrate these con-
cepts, which can be used to classify and
describe system features and approaches.

This paper has been a long time in the
writing. When it was started in 1982, its
intent was to explain some of the basic
early concepts in an embryonic field. Most
of what is now in the field did not exist
then. There was almost no common termi-
nology; even now terminology is not con-
sistently established. The ACM SIGCHI
(Special Interest Group on Computer-
Human Interaction) was formed during the
time this manuscript was being written and
revised. Human-computer interaction is
now an area of research and practice with
broadly recognized impact and increasing
rate of growth. Like any survey, this paper
is a representative snapshot of the subject
at a given point in time.

Scope of the Paper

The focus of this survey is the management
of the computer science, or constructional,
aspects of human~computer interface de-
velopment. We do not deal explicitly with
interface form and content nor with behav-
ioral aspects of interface development.
Consequently, this is not a tutorial on
guidelines and principles for creating qual-
ity interfaces; rather, it is a presentation of
the means-the theories, the methodol-
ogies, and the tools-for incorporating dia-
logue design principles cmce they are known
into human-computer interfaces. In fact,
the concepts presented are independent of
specific dialogue design principles. The
problem addressed here is not how to con-
struct good interfaces; it is how to provide

anenuironment in whichgood interfaces can
be constructed.

Psychological models of end-users and
aspects of cognition, as well as empirical
evaluation of interfaces, are not part of
this paper. Although artificial intelligence
considerations such as natural language
understanding, knowledge-based end-user
models, and expert systems are very much
a part of the broader subject of human-
computer interfaces, especially in the long
term, they are excluded from the scope of
this paper. The volume of research in each
of these areas is such that they merit sep-
arate surveys.

Although the viewpoint from which this
survey is prepared has a computer science
orientation, it addresses concepts and is-
sues beyond specific technical questions. Its
intended audience is primarily computer
science researchers and practitioners, as
well as psychologists and human factors
experts who wish to know more about
the computer science aspects of human-
computer interaction.

Background

The groundwork for development of effec-
tive human-computer interfaces was laid
during the last decade. Not surprisingly,
among the leaders of this early work were
some who specialized in graphics [Foley
and Wallace 1974; Newman and Sproull
19791. Literature on human factors and
behavioral science research addressed in-
terface design from an empirical perspec-
tive [Miller and Thomas 19771. Most of the
computer science work in this period, how-
ever, subjectively addressed interface de-
sign principles and guidelines [Cheriton
1976; Hansen 1971; Kennedy 1974; Martin
1973; Wasserman 1973, 19811, and this
work was not, in general, experimentally
validated. Of the hundreds of guidelines
compiled from the literature [Smith and
Mosier 1986; Williges and Williges 19811,
only a small portion have any empirical
basis. Also, many contradictions and incon-
sistencies are found in the literature. None-
theless, design principles and guidelines
are important, and there is a need for

8 * H. R. Hartson and D. Hix

methodologies and tools to facilitate in-
clusion of these principles in interface
design.

The interest in human engineering of
computer systems has grown to the point
that entire journal issues are devoted to
research in this area [e.g., ACM Computing
Surveys 1981; Communications of the ACM
1983; IBM Systems Journal 1981; IEEE
Computer 1982; IEEE Software 19891.
Workshops are dedicated to the study of
the human-computer interface and its de-
sign [e.g., ACM SIGGRAPH 1986; ACM
SIGGRAPH 1988; Graphical Input Inter-
action Techniques 1983; Guedj and Tucker
1979; Guedj et al. 1980; National Research
Council 1983; Olsen et al. 1984; Pfaff 19851.
A sequence of meetings in this field has led
to the CHI (Computer-Human Interac-
tion) conference and other similar confer-
ences [ACM CHI 1983, 1985, 1986, 1987,
1988; ACM SIGSOC 1981; HCI Hawaii
1984, 1987; INTERACT 1984, 1987; NBS
19821. Journals and books are specializing
in this area [e.g., Card et al. 1983; Coombs
and Alty 1981; Ehrich and Williges 1986;
Hartson 1985; Hartson and Hix 1988;
Moran 1984; Norman and Draper 1986;
Shneiderman 1980, 1987; Sime and
Coombs 1983; Smith and Green 19801.

This new area of work can, in fact, be
considered revolutionary because it has
profoundly changed the way human-
computer interfaces are developed. It
shares characteristics of other computer
science revolutions such as those brought
about by the emergence of high-level lan-
guages, database management, and struc-
tured programming. These revolutions
have similarly been punctuated with tools
having a significant impact on productivity.
Each has also had its share of difficulties
with initial acceptance. For most cases,
however, the cost of not using new concepts
and tools eventually became too high to
resist.

Human-Computer Interface Management:
Terminology for an Emerging Field

In response to the lack of useful, consistent
definitions, we present working definitions
for key terms, drawing from the sometimes

conflicting literature. These definitions
are intended to help in understanding
the framework of concepts this paper
establishes.

Ideally, the terms “human-computer dia-
logue” and “human-computer interface”
(also called the “user interface”) are de-
fined separately to denote, respectively, the
communication between a human user and
a computer system and the medium for that
communication. Thus, a dialogue is the ob-
servable two-way exchange of symbols and
actions between human and computer,
whereas an interface is the supporting soft-
ware and the hardware through which this
exchange occurs. The two terms, however,
are tied closely together in the development
process, and we shall use them synony-
mously here just as they are in most of the
literature.

Even with a working definition, it is
sometimes difficult to identify within a
computer-based system what is dialogue
and what is computation; there are gray
areas between. For example, task analysis
and other end-user-oriented modeling
involve the entire system’s behavior, both
dialogue and computation. It might be
possible to deduce a model of the entire
system’s behavior from the dialogue
ohservahles, but the terms “dialogue” and
“interface” (as used in this paper) refer only
to the end-user’s inputs and the localized
processing of these inputs and to the pres-
entation of the computer’s outputs.’ They
do not refer to the functional (algorithmic)
transformation of inputs into output-
that is the purview of the computational
component.

Human-computer interface management
or dialogue management [Ehrich and Hart-
son 19811 or user interface management
[GIIT 19831 refers to the management of
the computer science, or constructional,
aspects of humanwzomputer interface
development, including representation,
design, implementation, prototyping, exe-
cution, evaluation, and maintenance. User
interface management systems (UIMS)

’ Unfortunately, this use of the terms “input” and
“output” favors the vieupoint of the computer over
that of the end-user, hut their usage teems too well
established to he changed.

are interactive tools for supporting
these interface management activities (see
Section 4).

In order to discuss concepts of human-
computer interface management, it is nec-
essary to identify basic types of human-
computer dialogue. According to Hutchins
et al. [1986], there are at least two meta-
phors that describe ways in which humans
interact with computers: the conversational
world and the model world. These corre-
spond to two general types of dialogue:
sequential dialogue and asynchronous dia-
logue, respectively. In the conuersational
world, the end-user describes what to do,
typically by using a command language.
This kind of dialogue is typically called
sequential dialogue, moving in a predictable
manner from one part of the dialogue to
the next. Sequential dialogue allows both
end-users and developers to visualize spe-
cific logical sequencing behavior. Sequen-
tial dialogue includes request-response
interactions, typed command strings, nav-
igation through networks of menus, and
data entry. Figure 1 is a screen from a
personal computer running an interactive
compiler. This screen results from a linear
sequence through a hierarchy of menus.
The end-user first selected “options”
from the menu bar at the top of the screen,

which produced a pop-up menu from
which “compiler” was selected. “Code gen-
eration” was chosen from the subsequent
menu, leading to the topmost menu shown
in Figure 1.

In the model world. the end-user shows
what to do by “grabbing” and manipulating
(e.g., with a mouse) visual representations
of objects. Thus, direct manipulation
[Shneiderman 1983, 19871 is used to de-
scribe this interaction style. Figures 2a and
2b show an example of simple direct ma-
nipulation of a graphical object using a
graphical paint package. The box in Figure
2a is not large enough to enclose the base-
ball player. The end-user can “grab” one of
the “handles,” in this case the lower right-
hand corner (as shown in Figure 2a), and
directly stretch the rectangle by moving the
mouse until the rectangle is the desired size
(as shown in Figure 2b).

Often associated with direct manip-
ulation in the model world metaphor is
multi-thread dialogue, a task-oriented con-
cept referring to the multiplicity of task
paths available to the end-user at any given
instant during the dialogue. Figure 3 is a
“dialogue box” that exhibits multi-thread
dialogue. This dialogue box is displayed in
response to an end-user request to open a
document (file) from within a commonly

10 . H. R. Hartson and D. Hix

CL File El lit Stule Font Lauout Arranoe Fill Lines Pen

* File Edit t Layout Rrrsnge Fill Lil

m Untitled

i
i :

(b)

Figure 2. Example of direct manipulation dialogue

used word processing system. The end-user setting a read only mode. Work on these
can choose to do any of several different tasks can proceed in any order, without
tasks, including scrolling through file synchronization among them.
names, selecting a file, opening the cur- The general term for this kind of dialogue
rently selected file, leaving the dialogue is nonsequential, or asynchronous, dia-
box, changing drives, ejecting a disk, or logue. In sequential dialogue, the system

Human-Computer Interface Development

Unfortunately. I do not currently have any open positions for
Graduate Research Assistants

Figure 3. Example of a dialogue box that exhibits multi-thread dialogue.

presents the end-user’s work one task at a
time. In asynchronous dialogue, many tasks
(threads) are available to the end-user at
one time. Dialogue is asynchronous in the
sense that sequencing of each thread is
independent of the others. At almost any
point in the work on one task, the end-user
can switch to another task and, later, back
to the first. Asynchronous, multi-thread
dialogue is sometimes also called euent-
based dialogue because end-user actions
that initiate dialogue sequences (e.g., click-
ing the mouse button on an icon) are viewed
as input events. The system provides re-
sponses to each input event. Concurrent
dialogue is multi-thread dialogue in which
more than one thread can be executed si-
multaneously. While one task is executing,
another can be started, overlapping the
first. This represents concurrency from
both the end-user’s and the system’s view-
point. A simple example is a clock on
the screen updated by a time-keeping pro-
cess running concurrently with a word
pUXeS%X.

For conversational parts of a dialogue,
end-users interact mainly via the keyboard.
For model world parts of a dialogue, end-
users interact by manipulating screen ob-
jects. A click of the mouse button can be

. 11

used, for example, to select an object. This
model world selection action corresponds
directly to the naming of a menu choice,
command, or object by the end-user in the
conversational world. The large majority of
direct manipulation interaction is accom-
plished by movement of the mouse. An
object is dragged to a new location. A corner
of a graphical box is moved to change its
size and shape. Objects are moved to indi-
cate an operation to perform on them; for
example, a file icon can be moved to a new
directory or to a trash can icon to request
that it be copied or deleted.

The model world or direct manipulation
style offers higher usability, in general, for
end-users, but both it and the conversa-
tional world style are currently used in
many interfaces. The trend, however, is
toward asynchronous kinds of dialogue.
This trend is one of the most significant
phenomena in the field today and is exem-
plified by the Apple Macintosh personal
computer. Following the Xerox PARC
S”CCeSS of, among others, Smalltalk*
[Cox 1986; Goldberg and Robson 1983;
Tesler 19811, Star [Smith et al. 19821, and

’ Smalltalk is a registered trademark of Casio, Inc

12 . H. R. Hartson and D. Hix

the Apple Lisa” [Williams 19831, the
Macintosh’ [Williams 19841 introduced
multiple windows and direct manipulation
dialogues into the mass marketplace. The
impact of these innovations and related
projects and products has been enormous,
changing the complexion of computing.
They have become a de facto interface
standard and are now copied in other per-
sonal computers, workstations, and .even
mainframes.

Organization of the Paper

As research has progressed in the field of
interface management, some concepts have
emerged upon which a framework for
human-computer interface development
can be based. This paper discusses those
concepts, which are as follows:

l Dialogue independence. The character-
istic of an interactive software system
that separates the design of dialogue from
the design of computational software so
that changes in either tend not to cause
changes in the other.

. Structural modeling of the human-com-
puter interface. The description of the
general process of human-computer
interaction that can be used to direct
the design of dialogue and dialogue
development tools.

l Representcition of the human-computer
interface. The techniques used to rep-
resent definitions of specific instances of
human-computer interaction.

. Interactiue tools for humanwomputer
interface deuelopment. Software and
hardware to help automate system de-
velopment, especially for the human-
computer interface.

l Rapid prototyping. The process of
building executable versions of partially
constructed interactive systems to allow
early observation of system behavior,
especially its interface.

. Methodologies for interactiue system de-
uelopment. System development pro-
cesses and life cycles that treat interface
development as an equal and integral

part of the overall software development
PPXtXS.

l Control structures. The organization of
dialogue and computational components
and the mechanisms that govern logical
sequencing and internal commdnication
among dialogue and computational
events.

This paper presents a definitional frame-
work that describes each of these concepts
and serves as a means for classifying var-
ious approaches and systems. Extensive use
is made of examples from interface devel-
opment systems to illustrate the concepts.
Some systems reported in this article have
aspects that incorporate one or two, but not
all, of these interface management con-
cepts. Other systems come nearer to rep-
resenting all the concepts. The Appendix
to this paper is a sampler that describes
selected representative systems in the
context of the conceptual framework. The
presentation of each system in the sampler,
given in a uniform format based on the
concepts and other features for interface
management, shows how that system em-
bodies the concepts. Discussing the con-
cepts in the context of specific systems
gives a better understanding of both the
concepts and the systems.

1. DIALOGUE INDEPENDENCE

Early approaches to interactive system
development typically caused dialogue and
computational software to be tightly inter-
spersed. Dialogue became less and less
changeable as the design progressed. De-
spite an enormous commitment of re-
sources, the almost universal result was a
poor human-computer interface. Because
development of quality interfaces involves
an iterative cycle of design and evaluation
[Bennett 1984; Chapanis 1982; Good et al.
19841, however, an important criterion for
development of human-computer inter-
faces is fast, easy modification.

Database researchers and designers en-
countered a similar problem in the need
for easy modification of data without the
necessity of changing the corresponding
programs. The solution that emerged was
data independence [Senko et al. 19721, a

Human-Computer Interface Deueiopment l 13

concept that directs the design of data and
data manipulation programs so that many
changes in either do not necessitate
changes in the other. A formal data defini-
tion for communication between data and
programs allows the decoupling of data in-
stances from the programs. An analogous
concept, called dialogue independence
[Ehrich and Hartson 19811, is based on a
formal definition for communication be-
tween the human-computer interface and
computational programs. Dialogue inde-
pendence is a” approach in which design
decisions affecting only the human-com-
puter dialogue are isolated from those af-
fecting only application system structure
and computational software. In practice
this means that the appearance of the in-
terface to the end-user and choices of in-
teraction styles (e.g., command languages,
menus, forms) used to extract inputs from
the end-user are not known to the compu-
tational software. Dialogue independence
is crucial to easy modification of the inter-
face for iterative refinement, as well as
ease of maintenance. Almost all modern
approaches to human-computer interface
management are based to some extent
on dialogue independence. Section 1.2
discusses approaches to accomplishing
dialogue independence.

tion System Z. Without dialogue indepen-
dence to guide the development process,
the program logic for sequencing through
the typed commands and the data struc-
tures for collecting end-user’s choices are
programmed into the computational com-
ponent. It is impossible to change the
interface structure or details without af-
fecting the computational component.

Now let us suppose that testing with a
particular end-user community revealed a
requirement to update the interface design
for Information System Z to pull-down
menus and dialogue boxes (of the type
shown earlier in Figure 3). To replace the
typed command string parser in the inter-
face would require significant changes in
the overall system code, especially vali-
dation of end-user inputs. A system de-
velopment approach based on dialogue
independence, however, would have
allowed this change to be limited to the
dialogue component and would not have
required a change in the rest of the appli-
cation system routines. Further, a view that
recognizes the set of typed command
strings as a grammatical structure within a
command language could produce two dif-
ferent interfaces-pull-down menus and
typed strings, say-that share the same
underlying dialogue structure. The sug-
gested changes would then be relatively
easy to make, and both kinds of interfaces
could be used simultaneously with the same
computational component.

1.1 Motivation for Dialogue Independence

Dialogue independence may be most easily
understood by first considering its opposite.
Without dialogue independence, both the
way in which dialogue is structured and the
details of how it is conducted with the end-
user are directed by the computational
requirements of the application system.
Knowledge of dialogue details and decisions
about interaction styles are intermixed
with the computational component. Sys-
tems resist modification, and it is difficult
to provide for human factors. These diffi-
culties are illustrated in the following small
CWlPkS.

The first example shows the importance
of dialogue independence to flexibility of
the interface design. Let us assume a cus-
tomer specifies that a typed command lan-
guage be used to convey commands and
parameters from the end-user to Informa-

The point to be made is that two very
different problems are involved: one a com-
puter science problem, the other a human
factors problem. With dialogue indepen-
dence, separate solutions can be generated,
each requiring very different problem-
solving skills. In the computer science
problem, each computational routine needs
a set of valid input values, not a conversa-
tion with the end-user. The computational
function should not care how these input
values are validated, how they are entered
by the end-user, or in fact where they come
from at all. On the other hand, the human
factors problem is to design the dialogue to
adapt the computer as a tool to perform a
task for the end-user. From this perspective
the dialogue must be easy to use, accepting
input values, providing feedback and

14 * H. R. Hartson and D. Hix

clarification where useful, checking input
values against validation criteria, and guid-
ing the end-user from inputs that do not
meet the criteria to ones that do. The valid
input values are then conveyed to the com-
putational component.

In the next example (not hypothetical),
lack of dialogue independence prevented
refinement of a software product design to
meet human factors requirements such as
consistency. A major vendor marketed a
multifunction office information system
that prided itself on ease of use of its inter-
face. Yet here are instructions for accessing
the help facility:

The comma key on the minikeypad is the HELP
key for farms. While in the ABC-Style Editor and
Calendar Management, use PI% for HELP; use “H”
for HELP while in the Desk Calculator; use the
“GOLD” key plus an “H” key while using the XYZ-
Style Editor. By the way, if you need help cre-
ating a document, it is better to he in the Word
Processing Menu when you press HELP rather than
in the main menu.. It is a good idea to remember
the location and purpose of each key mentioned
above.

The end-user, of course, must already know
how to access help information in order to
receive this message. When faced with this
example, the vendor sales representative
responded that this software package was
an amalgamation of existing functions,
with code coming from diverse sources, and
that the interfaces of each function were so
hopelessly interwoven into the application
code that it would have been impossible to
provide a single consistent interface in time
to meet the marketing deadline. The result
is obvious: a poor design to which negative
customer feedback will eventually force
many costly modifications.

The last example shows how dialogue
independence is used as a design abstrac-
tion to allow a top-down approach, focusing
first on high-level design issues while post-
poning commitment to details. In a hypo-
thetical Calendar Management System
(Mantei, personal communication, 1985),
four overlapping windows are used to dis-
play an end-user’s monthly, weekly, daily,
and hourly appointment schedule. The de-
velopers know from their task analysis that
some end-user function will be needed to

bring each of these windows on top of the
others at various times for viewing and
manipulating. Further testing is required to
decide what that function will be called and
how it will be implemented in the interface.
Possibilities include one single arrow key,
or NEXT and PREVIOUS keys for tog-
gling or sequencing through the windows.
Since each successive window gives more
detailed information, a ZOOM key is also a
possibility. In the meantime, dialogue in-
dependence allows developers to call this
function something and embed it in the
high-level sequencing logic and computa-
tional routines, while deciding much later
the end-user’s name for the function and
details of the dialogue to invoke it.

1.2 Approaches to Dialogue Independence

How, then, can this separation be achieved?
On the surface it may appear simple. Pro-
grammers sometimes say, “Oh, I’ve been
doing that for years,” meaning that they
put their end-user error messages in one or
two procedures or files separate from the
computational routines. Or they mean that
a11 their input and output with the end-
user is isolated into a few modules. This is,
of course, good programming practice, but
it does not ensure dialogue independence.
Dialogue-oriented procedures are still
linked to the computational code and can-
not be modified independently of the rest
of the program. Knowledge of dialogue de-
tails are often still woven into the applica-
tion code, and the task of developing
:iazgue is still basically a programming

Dialogue independence is supported by
the design-time separation of dialogue from
computational software. This means that
an interactive application system is com-
posed of a dialogue component, through
which all communication between the end-
user and the system takes place, and a
computational component, the functional
processing mechanisms of the application
system with which the human being does
not directly interact. These components are
kept separate as much as possible during
system design, redesign, and maintenance
but are bound together for rapid prototyp
ing and execution. Dialogue independence,

Human-Computer Interface Deuelopment . 15

however, goes well beyond just separation
of the system into components and is not
without difficulties or drawbacks. For ex-
ample, some dialogue development tools
(see Section 4) require considerable knowl-
edge of the style of interaction (e.g., menu,
use of a mouse) to be anticipated a priori
in the dialogue interpreter and design tools.
New interaction styles, techniques, or de-
vices will then require significant new pro-
gramming in these parts of the tools, A
second difficulty stems from having a sep-
arate role to develop the dialogue compo-
nent, potentially increasing the need for
communication among developers and im-
plementers. New development methodol-
ogies (see Section 6), however, are emerging
to address this problem. Further, separa-
tion of dialogue code from computational
code can potentially cause a decrease in
performance, especially from increased in-
ternal communication among run-time
components. This can he overcome to some
extent by new system architectures empha-
sizing, for example, concurrent execution
of the dialogue and computational compo-
nents and by new workstation hardware for
dialogue support.

For sequential dialogue, where it is easy
to delineate a synchronous “turn-taking”
pattern containing end-user input of re-
quests, system computation, and system
output of results, physical separation at
design time of dialogue-related software
and data from computational software is
fairly straightforward. For multi-thread,
direct manipulation dialogue, where end-
users directly, visually, and asynchronously
perform operations on interface represen-
tations of application objects, separation
into components can be more difficult to
achieve. This is because the execution of
dialogue and computation tends to be more
closely interleaved, and the two compo-
nents often share a common data represen-
tation of the interface and application
objects. Also in direct manipulation dia-
logue, there is a need for a closeness of the
interface to application semantics (e.g.,
for semantic feedback in the interface)
that works against the separation of dia-
logue and computation found in dialogue
independence. This forces trade-offs in
the system architecture [Hartson 19891.

Nonetheless, design decisions regarding ap-
pearance and behavior of the interface can
often be kept independent of those for the
software that manipulates the correspond-
ing data structures. In nearly all cases
where it can be achieved, the considerable
advantages of dialogue independence ap-
pear to outweigh the disadvantages. All the
systems surveyed in the Appendix exhibit
some form of dialogue independence.

1.3 Dialogue Developer: Separation
of Dialogue Creates a New Role

For many years, the two main roles in-
volved in software development were those
of the application programmer and the end-
user of the system. These two types, how-
ever, frequently had severe communication
problems. The programmer, impatient to
begin coding, had difficulty understanding
the end-user’s needs. Similarly, the end-
user was often not able to articulate re-
quirements for the system and was baffled
by the strange “computerese” in which
the programmer tried to explain what was
happening. The role of systems analyst
evolved to provide an understanding of
both the technical (programmer) and non-
technical (end-user) sides of the system.
Also, the role of application domain expert
emerged to supplement end-user knowl-
edge about requirements of specific kinds
of systems. But neither the systems ana-
lyst nor the application domain expert
is concerned primarily with the human-
computer interface.

In the last few years, human factors spe-
cialists have become an increasingly impor-
tant part of computer system development
teams, as advocates of the end-user’s need
for an effective interface. This has led to a
new role that we call the dialogue developer.
This same role is also called a dialogue
author, a dialogue engineer, an interface
engineer, and a dialogue designer. The dia-
logue developer is a human factors specialist
concerned with design, implementation,
and evaluation of the form, style, content,
and sequencing within human-computer
interfaces. The dialogue developer’s needs
and constraints are different from those of
the programmer. The dialogue developer is
involved in the entire system life cycle,

16 . H. R. Hartson and D. Hiz

including task analysis and system require- 1.5 Dialogue Independence in the Evolution
mats specification. During design and im- of Interface Management
plementation of the dialogue, the dialogue
developer uses an understanding of psy- Evolution of human-computer interface

chology and human factors principles to management follows a path from a mono-

build and iteratively evaluate and reline an lithic approach of programmed dialogue

interface that supports effective human-
to tool-supported development. Evolution

computer communication. Often, dialogue began with device independence, which

independence allows modifications to be
shields the application programmer from

made quickly, so that the evaluation and
low-level device characteristics. The rudi-

revision cycle can begin again.
ments of dialogue independence existed at

Unlike the programmer, the dialogue de-
least as early as the 1960s. An approxima-

veloper must be sensitive to cognitive needs
tion to the concept is to be found in some

of the end-user. The dialogue developer role
commercial products of that time. The

is a cross between a behavioral scientist
approach was a logical extension to the

and a systems analyst. As an analogy, the
notions of language independence, data in-

role of industrial engineer has been suc-
dependence, and machine independence,

cessfully introduced to represent a blend which were then gaining attention. A later

of skills that bridge the gap between the example is Digital Equipment Corpora-

psychologist and the machine designer. tion’s TRAX operating system, circa 1975,
an abortive commercial venture but one
that included support for separate dialogue

1.4 Internal and External Dialogue: design. The dialogue language called ATL,

Separation of Dialogue Creates implemented in TRAX, is a precursor of

a New Interface Digital’s Forms Management System, pre-
sented in Section 4.

Interaction between the end-user and More recent literature contains descrip-
the dialogue component is accomplished tions of systems for which separation of
through what we call external dialogue- dialogue from computation was attempted
the human-computer interface. Separation after the system was implemented. That is,
of the dialogue component from the com- generalized end-user interfaces were devel-
putational component creates a new inter- oped to be used as “add-on” front-ends to
face between these components and a new
kind of dialogue through that interface.

existing application systems. Black [19771
was one of the first to develop a front-

The computational component, which con- end dialogue processor for parameter- or
tains no mechanism for direct communi- transaction-driven application systems.
cation with the end-user, engages in a less End-user inputs for complex command
obvious internal dialogue with the dialogue languages were reduced to a sequence of
component. This new internal interface choices in a tree-structured representation
and its special dialogue are the basis for of the grammar.
communication between the dialogue de- In Bass and Bunker [1981], the interface
veloper and the application software devel- for a statistical analysis package operated
oper at design time and are the focal point in both a system command and a job con-
for binding end-user dialogue and compu- trol command environment, and it applied
tation together at run time. to both batch and on-line jobs. Essentially

Internal dialogue is not human under- one interface was adapted to this diversity
standable at execution time, but its formal of use in a single application. In Wright
representation at design time is a key to and Brown [1978], the interface was cus-
dialogue independence. Either the end-user tom coded to a single, specific medical
interface or the computational software can application. Both these groups began with
be changed without affecting the other, as an existing application system, which did
long as both remain consistent with their not have an easily usable interface, and
common internal dialogue representation. attempted to revise the human-computer

Human-Computer Interface Deuelopment . 17

dialogue to meet their needs. Thus, these
systems achieved some separation of dia-
logue and computation, but not true dia-
logue independence, since the results were
not generalizable and extensible to other
systems or even to other interfaces for the
same systems. These approaches also did
not use an overall development approach
that included consideration of a separate
computational component.

The work on a demographic database
system reported in Evans et al. [1981] is
somewhat similar. Here an adaptable end-
user interface provided more than one dia-
logue to an existing software system as
needed to suit the varying requirements of
different end-user communities. Separa-
tion of the interface code from the rest of
the system made this possible.

Display management, which provided
general development tools for parts of the
end-user interface, with emphasis on screen
displays, led to application generators.
Application generation was-and is-an
approach for increasing productivity in the
implementation of interactive systems by
partially automating code production for
specific kinds of applications. Application
generators represent an evolutionary step
in which the concepts of human-computer
interface management, especially dialogue
independence, began to take tangible form.
In application generators, special-purpose
high-level languages are used to produce
display screens (e.g., menus and forms) and
accept inputs (including command lan-
guages and data entry). Dialogue inde-
pendence depends on the appropriate
separation of resulting code modules.
Syntactic and lexical details can be isolated
because other modules do not need knowl-
edge of how these modules obtain end-user
inputs.

From application generators, the evo-
lutionary path led to user interface man-
agement systems, or UIMS, and other
interface development tools. In UIMS, the
concept of dialogue independence is explic-
itly recognized and supported. Most UIMS
are based, at least to some extent, on dia-
logue independence. This is true especially
of those for developing sequential dialogue,

but asynchronous dialogue creates some
problems in maintaining dialogue inde-
pendence (see Section 7). Several primarily
research-oriented systems incorporated
dialogue independence into their approach
to application development. Hayes et al.
[1981] referred to the independence of the
end-user interface from the application
program or end-user’s tool as “tool inde-
pendence.” Many application systems
(end-user tools) share the development cost
of this single intelligent interface system.
Since dialogue independence allows more
than one dialogue component for a single
computational component, an application
system can have two or more very different
end-user interfaces. Foley [19&31] and Feld-
man and Rogers [I9821 have captured this
concept in their Abstract Interaction Han-
dler (AIH), which contains knowledge of
interaction styles, allowing their style-
independent applications to be used with
more than one kind of interface. Dialogue
independence has also been an important
driving force for both theoretical and im-
plementational development of the Dia-
logue Management System (DMS) [Ehrich
and Hartson 19811. In DMS, surface details
of an interface are decoupled from its deep
structure through levels of abstraction.
Work by each of these three research
groups (COUSIN, GWUIMS, and DMS,
respectively) is detailed in the Appendix.

Dialogue independence is less important
in the context of toolkits, which are librar-
ies of routines for implementing human-
computer interface features. Toolkits are
compatible with dialogue independence but
do not necessarily support it; maintaining
dialogue independence is incumbent on the
application programmer who is using the
toolkit.

Numerous systems that represent these
important steps in the evolution of human-
computer interface management are dis-
cussed in Section 4 and in the Appendix.
They embody various approaches to sepa-
ration of the dialogue from the computa-
tional software of an application system,
basic to the concept of dialogue indepen-
dence and of human-computer interface
management.

18 * H. R. Hartson and D. Hix

2. STRUCTURAL MODELING OF THE
HUMAN-COMPUTER INTERFACE

2.1 Types of Interface Modeling

There are many kinds of modeling applied
to human-computer interaction; three of
the most prevalent are for task analysis,
structural description, and interface repre-
sentation. The first kind, task-oriented
modeling, is used to analyze and describe
the details of a particular end-user task,
often by hierarchical decomposition into
levels of subtasks. Task-oriented models
are typically used to drive the process of
design for specific interfaces and often in-
clude a description of the knowledge an
end-user has or needs about the task and
how to perform it [K&as and Poison 19851.
At detailed levels, task descriptions are very
dialogue and device dependent, being spe-
cific to keystrokes and other actions by the
end-user of a particular interface. Although
they may or may not be structural models
of the computing task, task-oriented
models are not structural models of hu-
man-computer interaction. Therefore, al-
though such models and their analysis are
important to the dialogue development
process, they are outside the scope of this
paper and will not be discussed further.

stances of human-computer interaction;
that is, they are used by dialogue developers
to describe details of form, content, and
sequencing for parts of a specific interface
design. Methods for representation can be
based on a structural, descriptive model. In
such cases the structural model can guide
the developer during the process of repre-
senting the dialogue design and can guide
readers of the recorded design. Structural,
descriptive models are the subject of this
section, and interface representation
schemes are discussed in Section 3.

Directives from workshops on human-
computer interaction mandate a need for
“a model of interaction and a language for
specifying end-user interactions which
have been subjected to experience in real-
world applications” [GIIT 19833. This
quote refers to the other two areas of mod-
eling, which we feature as concepts of
interface management. Structural models
of the human-computer interface are de-
scriptive of the general process of human-
computer communication; that is, they
theoretically and generically describe the
structure of end-user exchanges with corn-
puters. For example, some of these models
identify dialogue objects, such as prompts,
inputs, validations, echoes, messages, and
their relationships. Such models guide a
dialogue developer and help organize the
dialogue development process. In contrast,
interface representations (specifications) are
schemes for representing particular in-

Some models tend to overlap both these
types of models. An example is the Com-
mand Language Grammar (discussed in
Section 3.4), which cuts across several
types of models because of the level of detail
it is capable of representing.

Much as it was in the early stages of
software engineering development, current
approaches to human-computer dialogue
design are often ad hoc and unstructured.
This lack of a framework for the constitu-
ent parts of human-computer interaction
leads to dialogue development procedures
that are also ad hoc and unstructured. In
many interface development tools (see Sec-
tion 41, the model of dialogue is implied
and must be inferred by tool users. In other
tools, the model of dialogue is explicit and
provides terminology and organization
upon which to build dialogue designs.
Structural, descriptiue modeling of the hu-
man-computer interface is a fundamental
concept of interface management, neces-
sary to understanding the nature of hu-
man-computer interaction and therefore
necessary to the interface development
process. All structural models discussed
here appear to be for describing sequential
dialogue. A sequential model, however,
might be used to describe each thread of a
multi-thread dialogue, with implicit move-
ment among threads governed by a high-
level controller. Even this does not capture
the true asynchronous nature of a multi-
thread dialogue. Research on structural
modeling of asynchronous dialogue is still
embryonic; it is difficult in large part be-
cause such dialogue is less structured than
sequential dialogue.

2.2 Linguistic Models

2.2.1 Dialogue as Languages

Human-computer dialogue, especially se-
quential dialogue, can formally be modeled
as the grammar and vocabulary of a
humanwzomputer ‘*interaction language”
[Foley and Wallace 19741. Content and for-
mat, as well as logical sequencing, of se-
quential dialogue is extremely important in
determining how well an end-user can un-
derstand and manipulate the system. To
understand the idea of dialogue as an inter-
action language, consider the use of an or-
dinary command language. Each typed
command line is accepted, lexically ana-
lyzed, parsed according to a grammar, rec-
ognized as either a valid command or an
error, and acknowledged as either a valid
command (sometimes implicitly through
the presentation of the next prompt) or an
error. The action requested by the com-
mand, if valid, is performed. There is no
difficulty in seeing this kind of interaction
sequence as one involving language that
can be formally described by a grammatical
definition.

Depending on the interaction style, to-
kens expressing the end-user’s needs can
each be conveyed in different lexical
and syntactic forms--menus, programmed
function keys, touch panels, voice in-
put/output, graphical picking of icons (e.g.,
by a mouse), and ordinary question-and-
answer text. For example, a direct manip-
ulation style such as the mouse can be used
to build up the same kind of command
found in a typed command string by select-
ing a function and then selecting, one at a
time, its operands and options. The system
may coach the end-user for each item, and
the command syntax is not as apparent.
Nevertheless, even if commands and oper-
ands are selected in a direct manipulation
style, each of the resulting tokens can be
seen as part of a command that is also
representable in a formal grammar defini-
tion. A linguistic model of dialogue is useful
for seeing beyond the surface differences in
dialogue form and dealing with similar in-
teraction structures in * uniform manner.

Human-Computer Interface Deuelopment * 19

The idea of language is involved in both
structural modeling and interface represen-
tation, but in different ways. In the first
case, structural models typically relate to
the language of the end-user, that is, the
interaction language in which the human
communicates with the computer. In the
other case, an interface representation lan-
guage used by the dialogue developer is a
m&language for definining the end-user’s
interaction language. The idea of viewing
an end-user interface from a linguistic
viewpoint-at conceptual, semantic, syn-
tactic, and lexical levels-was pioneered by
Foley [Foley 1980; Foley and van Dam
1982; Foley and Wallace 19741 and appears
in the GWUIMS in the Appendix. The
“conceptual level” is the collection of basic
system goals and functions that an end-
user must understand. The “semantic
level” encompasses input operations and
output presentation techniques. The “syn-
tactic level” contains specific token se-
quences to invoke semantic actions, as well
as specific form and content of output. The
“lexical level” defines token structure in
terms of hardware.

The lexical level of Foley’s conceptual,
semantic, syntactic, and lexical levels has
been further decomposed into two levels:
lexical and pragmatic [Buxton 19831. Fol-
ey’s lexical level encompasses a broad range
of diverse features, including composition
of tokens, spatial display concerns, devices,
and physical gestures. Buxton’s “lexical
level” addresses only token composition in-
formation, whereas the “pragmatic level”
subsumes issues of layout, devices, and ges-
tures. Buxton states that this pragmatic
layer is the main level of interaction be-
tween a human being and computer system.
It therefore has the greatest influence on
an end-user’s perception of the system and
should be given special attention.

22.2 A Dialogue Transaction Model

The “dialogue transaction model” [Hix and
Hartson 1987; (Johnson) Hix 19851 is a
descriptive model of the structure of hu-
man-computer interaction, providing the
framework for designing, representing, and

20 * H. R. Hartson and D. Hix

implementing interfaces using the Dialogue
Management System [Hartson et al. 19841.
The model is based on simple relationships
between formal languages and state ma-
chines and is empirically derived from ob-
servations of many interface styles and
techniques.

In the dialogue transaction model, a “lin-
guistic object” is an identifiable entity in
the observable symbols of dialogue. The
principle linguistic object is a “token,” an
abstraction representing the smallest unit
of end-user input that can have formally
defined meaning in terms of the application
or task. An example is a simple data value
or command that can be entered, say, as a
series of typed keystrokes, a menu choice,
the press of a programmed function key, a
mouse selection of an icon, or a word to a
voice recognizer. Each linguistic object in
the dialogue is processed by a correspond-
ing “constructional object.” A token is pro-
cessed by a constructional object called an
“interaction,” which is a dialogue function
that maps a %w” (uninterpreted and de-
vice dependent) end-user input to a vali-
dated and “normalized” token value. Token
values are validated within interactions ac-
cording to their lexical definitions and con-
straints. A normalized token value is a
device independent and interaction style
independent value that is globally under-
stood by the rest of the application system.

There are some cases in which more than
one end-user action is required to express
a token. For example, a command name
might be typed on an alphanumeric key-
board or a multidigit numeric value picked
by a mouse from a picture of a calculator
keyboard on the screen. Each separate
character is an instance of the linguistic
object called a “lexeme,” the smallest unit
of raw input from the end-user. Lexemes
are processed by a corresponding construc-
tional object called an “action,” so named
because it is one to one with end-user
actions.

In addition, tokens themselves can be
grouped together in semantically related
sequences called “sentences.” Sentences
are processed by constructional objects
called dialogue “transactions.” The set
of all valid sentences expressible by an

end-user comprises the end-user’s “trans-
action language.” Relationships among
tokens and constraints relating their values
make up the grammar of the transaction
language.

Each constructional object is composed
of “constituent objects,” such as “display
objects,” that can be static (completely de-
fined at design time) or dynamic (not bind-
able until execution time); “input objects,”
used to accept, but not validate, end-user
inputs; and “dialogue computation objects.”
Dialogue computation objects perform
computation directly in support of dialogue,
such as computing default token values for
an interaction, validating end-user input
against predefined lexical and syntactic cri-
teria, or mapping raw token values into
normalized token values. The hierarchical
relationship among constructional ob-
jects-transaction, interaction, and ac-
tion-serves as an aid in organizing
dialogue into levels of abstraction, each
level helping control complexity by hiding
detail of levels below it. Figure 4 shows a
typical configuration of constructional
model objects and their constituent objects.

The dialogue transaction model is well
suited for sequential dialogue, which usu-
ally has a linguistic structure among parts
of the dialogue relating to commands, pa-
rameters, selection of choices, data entry,
and values requiring parsing and/or vali-
dation. The model has also been applied to
direct manipulation style dialogue, which
involves entry of token values by the end-
user, but is not typically amenable to lin-
guistic structuring.

2.3 Nonlinguistic Models

2.3.7 Dialogue Cd/s

A “dialogue cell” has been developed
as a nonlinguistic-based model for describ-
ing and developing sequential human-
computer dialogue [Borufka and Pfaff
1981; Borufka et al. 1981, 19821. A dialogue
cell consists of four basic elements that
define the dialogue structure, as shown in
Figure 5. The “prompt” prepares the sys-
tem for end-user input actions and indi-
cates the type of data to be entered by the

Human-Computer Interface Deuelopment . 21

Figure 4. Dialogue transaction model (adapted from Hix and Hartson [19871)

human. The “symbol” is the input of the
end-user; it is a construct for specifying
type and value of that input. The “echo” is
the system interpretation of the symbol
entered by the end-user. The “value” is the
mapping of the input symbol to data usable
by the application program. In sum, a
dialogue cell is a unit that describes sequen-
tial dialogue interaction with an end-
user, including information to the end-user,

end-user input action, evaluation of end-
user input, echoing of end-user input, map-
ping from end-user input to value, and
delivery of the resulting value to the
computational component.

The four parts of a dialogue cell (prompt,
P; symbol, S; echo, E; value, V) are con-
nected as shown in Figure 5. This figure
also shows the order in which cell elements
are developed. Cells are initialized through

22 * H. R. Hartson and D. Hix

START START
- VALUE - VALUE SYMBOL SYMBOL

FINISH FINISH

- L PROMPT / - L PROMPT /

Figure 5. Figure 5. Dialogue cell (from Borufka et al. [1982]). Reprinted Dialogue cell (from Borufka et al. [1982]). Reprinted
with the kind permission of H. G. Bomfka. 0 1982 IEEE with the kind permission of H. G. Bomfka. 0 1982 IEEE

an initial value u(i) and produce a return
value U(O). A dialogue cell for input has a
nonempty return value [u(o)] for the value
entered by the end-user. A dialogue cell for
output has a nonempty initial value [u(i)].
Basic dialogue cells (consisting of P, S, E,
and Vsets) and their elements can be com-
bined hierarchically to represent sequences
of human-computer exchanges. In such an
organization, cells have parameters for
passing data, much like parameter passing
in conventional programming languages.

A dialogue developer creates dialogue,
but in a “dialogue language,” programming
it much the same way an application pro-
grammer would. Dialogue cells provide a
useful framework for dialogue program-
ming; this framework revolves around de-
fining an interface in terms of its basic
dialogue elements and defining the struc-
ture for handling interactions at both global
and local levels. That is, a human-com-
puter interface is structured into cells, and
cells are structured into prompts, symbols,
echoes, and values. Tools provided for a
dialogue developer include an input/output
system for accessing graphics devices
(through the Graphics Kernel System) and
a dialogue language for specifying data
structures and control flow. This approach
may be used conceptually, even in the sb-
sence of a system for executing dialogue
cells, to produce human~computer inter-
faces.

23.2 interaction Events

An “interaction event” has been proposed
as the basis of another nonlinguistic inter-
face model [Benbasat and Wand 19841. The
basic premise is that sequential dialogue is
composed mainly of a series of “interaction

events.” Such an event is composed of a
system “prompt,” an end-user “input,” a
system processing “action,” and “flow con-
trol” to determine the next interaction
event. Through the prompt, the system in-
dicates to the end-user that it wants an
input. The end-user then provides the in-
put, and the system responds with an action
based on the input. System flow of control
decides which interaction event will follow.
Other dialogue features include “input
checks” to validate end-user input, a “help”
feature invokable by the end-user, an “es-
cape” mechanism that allows the end-user
to skip the current input request, and “de-
fault values” that are responses assumed by
the system if the end-user provides no in-
put. The complete “interaction cycle,” com-
posed of these events, is shown in Figure 6.
Interaction events are executed by a dia-
logue generator. A fully functional dialogue
generator has been implemented, the exe-
cution of which is based on a tabular form
of interaction events called “reference
sets.”

This model is quite thorough, and ex-
amples of text, check, action, and flow con-
trol tables, which the dialogue generator
processes, are presented in Benbasat and
Wand [1984]. Interaction events, however,
appear descriptive only of sequential dia-
logue. The definition of the end-user input
seems, at least from the examples, to be
limited to simple data typing, without pro-
visions for more complete aspects of input
definition. Also, the definition of an inter-
action event encompasses more than just
the dialogue. The action component and
some of the flow control component are
really part of the computational and global
control components of the system, stretch-
ing the domain of the model into the

1. Prompt.
2. input (get from user or use default).
3. Escape: if Input = “escape,” then

1. Set “next event” indicator
2. End cycle.

4. Help: if Input = ‘“help,” then
1. Display additional information
2. End cycle.

5. Check: apply input checks. If errors, then
1. Report errors
2. End cycle.

6. Action: invoke related processing.
7. Flaw Control: set “next event” indicator.

Figure& lnteraetion cycle (from Benhasat and
Wand [1984, p. 108]). Reprinted with permission from
Izsk Benbasat.

complete human-computer system, not just
the interface. Despite this, the basic bene-
tits of this research are sound: practically,
to produce a dialogue generator to facilitate
human-computer dialogue implementation
and, theoretically, to provide a better un-
derstanding of these dialogues through a
common set of model components.

2.3.3 Other Nonlinguistic Mode/s

In the Graphical User Interface Design En-
vironment (GUIDE), a UNIXS-based dia-
logue design system from the University of
Glasgow [Gray and Kilgour 19851, the com-
ponents of a hierarchical model of dialogue
are mapped to the UNIX file management
system. Dialogue is described in “dialogue
scripts” that are sections of (mostly tex-
tual) UNIX files. UNIX directories corre-
spond to major dialogue units (e.g., for
processing whole commands). Subdirecto-
ries represent smaller components such as
prompts, echoes, and responses. A dialogue
interpreter executes dialogue by traversing
a script. In this environment, tools are
available to an end-user as well as a dia-
logue developer.

An interface processor is the basis for
another human-computer interaction
model [Edmonds 19821. This interface pro-
cessor consists of input, output, and dy-
namic processes, which perform simple
transformations (e.g., keyboard input to

Human-Computer Interface Deuelopment . 23

’ UNIX is a trademark of AT&T Bell Laboratories.

character strings) and determine actions of
the computer. This model appears to dwell
on physical processes at the expense of
providing insight into the essential nature
or structure of human-computer commu-
nication. And although the article postu-
lates that, using this model of an interface,
“we could clearly arrive at a description
of the system” and “. arrange that the
end-user’s model matched construction of
the interface,” the means for accomplishing
this was not explained.

One working group of the Seillac II
Conference [Guedj et al. 19801 proposed a
high-level model of interaction based on
a processing paradigm. A control level
and a performance level between human
and computer represent, respectively,
“what” interaction occurs and “how” it oc-
curs. Although basically sound, the model,
because of its high level of abstraction,
provides little insight into the specific task
of designing interfaces.

Norman has proposed four distinct
stages of human activity during interaction
with a computer: intention, selection, exe-
cution, and evaluation [Norman 19841. Be-
cause each stage has different implications
for system design, different supporting
tools are needed. The premise is that the
four stages can be used to guide screen
design (e.g., evaluation is essentially a feed-
back stage, so appropriate information
should be given to the end-user). Although
the stages appear realistic, they seem to
lack specific means for direct application
to organizing the interface development
p*lXCS.

2.4 Architectural Abstractions

Some models, rather than being directly
descriptive of human-computer interac-
tion, are architectural descriptions of how
the human-computer interface relates to
the rest of an application system.

The “Seeheim model” [Green 1985; Pfaff
19851 of Figure 7 is a run-time architectural
model of human-computer dialogue. The
“presentation component” contains device-
dependent details and specifics of displays,
as well as interaction style descriptions.

ACM Computing Surveys, Vol. 2,. No. I, March 1989

24 . H. R. Hartson and D. Hix

Application
Interface

Model

Figure 7. Seeheim human-computer interface model (adapted from Green [I%%]).
Reprinted with the kind permission of Mark Green.

Figure 8. Dialogue socket (from Coutaz [1X%5, p. 301). Reprinted with permission from
J. Coutaz (Lahoratoire G&nie Informatique. Ihag, Grenoble, France). 0 1985 IEEE

human-computer
interface

II - SYSTEM LOGIC -

SOFTWARE

HARDWARE

Figure 9. DMS application system architecture

The “dialogue control component” does
dialogue processing and sequencing, while
the “application interface model” contains
the application view of the interface
and the interface view of the application.
Communication with the application is
via procedure calls and data structures,
described at an abstract, implementation
independent level.

In the “dialogue socket model” (Coutaz
19851, toolkit abstractions are used to re-
lieve a dialogue developer from dealing with
low-level details of interaction. The dia-
logue socket is a high-level abstraction that
connects lexical and syntactic specifica-
tions of the dialogue with an object-ori-
ented view of lower level input and output.
As shown in Figure 8, each terminal or
workstation has its own device-dependent
dialogue handler that plugs into one side of
the dialogue socket, while the application
plugs into the other side. Both sides are
agents that perform operations on shared
interface objects. The socket maps dialogue
from the lexically and syntactically specific
dialogue handler to the object/operation
view required by the application. The
socket becomes a “virtual user” to the
application.

Architecture of an application system
produced using the Dialogue Management
System [Hartson et al. 19841 approach
is shown in Figure 9. Logic of the applica-
tion system is broken into three compo-
nents. The “computational component”
contains semantic functionality of the ap-
plication system but contains no dialogue.
The “dialogue component” is composed
of dialogue transactions (see Section 2.2).
These contain all dialogue functionality,
logic, and contentl such as displays,
error messages, and Input processing, The
dialogue component also contains some
computation but only computation that di-
rectly supports dialogue, such as validation
of end-user input. It does not contain
any semantic computation of application
system functionality. The “global con-
trol component” governs logical sequenc-
ing among dialogue and computation, in-
voking dialogue and computation as needed
at run time.

Computer Interface Deuelopment . 25

3. REPRESENTATION OF THE
HUMAN-COMPUTER INTERFACE

Dialogue developers require a mechanism
for expressing and recording their designs.
Numerous techniques have been used to
support the concept of representation of the
human-computer interface. Among the ear-
liest methods were, of course, written pro-
grams. Since then, other mechanisms have
emerged, including textual and graphical
representation languages. Recently, sys-
tems for dialogue development have begun
to provide automated tools for interactive
production of the interface representation.
This section presents representation tech-
niques; discussion of tools here is limited
to illustration of these techniques. Tools
are discussed in a broader context in
Section 4.

3.1 Issues in Representation of the Interface

3.1.1 Metalanguages

Metalanguages-languages for represent-
ing other languages-have several well-
known problems. They often involve
notations that are almost unreadable
to the average person. Formal language def-
initions meet with resistance, especially
from those who are more pragmatic, be-
cause they are so cryptic and often difficult
to understand. It is sometimes impossible
to separate metalanguage symbols from
symbols of the language being defined. Nu-
merous language representation techniques
have been developed for programming and
command languages, including Backus-
Naur Form (BNF), regular expressions,
context-free grammars, state transition
diagrams, and Petri nets. As interaction
languages evolved, the need for their rep-
resentation became apparent. Researchers
tried to use many of these existing means
of language representation usually with
only limited success.

Most well-known methods of language
syntax representation are useful primarily
for static programming languages. They are
not powerful enough for expressing all con-
cepts of programming languages (e.g., con-
text sensitivity and semantics), not to

26 . H. R. Hartson and D. Hix

mention representation of the dynamic as-
pects of interaction languages [Jacob
19831. Even for ordinary sequential dia-
logue, such representational methods must
be augmented with other techniques. Lan-
guage-oriented representational techniques
are largely inappropriate for representing
direct manipulation style dialogue. Al-
though the direct manipulation interface
paradigm is one of the most popular, it is
also one of the most difficult to represent,
largely because of its highly interactive
nature.

The problem of interface representation
goes beyond language concerns. For exam-
ple, there are many visual and other per-
ceptual aspects to be represented. BNF and
state transition diagrams are primarily
means for representing grammatical rela-
tionships (e.g., logical sequencing of a com-
mand and its parameters) among end-user
inputs. But neither BNF nor state diagrams
show the process of how, for example, the
command is solicited by the system (e.g.,
the appearance of a menu or set of graphical
icons on a screen) and entered by the end-
user (e.g., by typing a choice code or picking
an icon) or how the system responds with
semantic feedback (e.g., changes in the cur-
sor during dragging). Additional techniques
are required to represent these. In
RAPID/USE [Wasserman 19851, for ex-
ample, arcs of state transition diagrams are
used to show grammatical connections
among nodes, but screen appearance and
input mechanisms within each node are
represented by a textual dialogue program-
ming language.

Jacob [1983] has done an extensive sur-
vey and thoughtful comparison of tech-
niques for interface representation and
specification. Two classes of techniques are
most prevalent: those based on BNF-type
definitions and those based on state tran-
sition diagrams. His comparison of those
two techniques concludes that state tran-
sition approaches provide more compre-
hensible language representations because
they show time sequencing and surface
structure of the human-computer interface
more directly than BNF does. They are
therefore a better cognitive match to the
programmer’s and the dialogue developer’s
mental models.

Another comparison has shown similar
results [Guest 19821. One tool, a powerful
syntax-directed translator (SYNICS), was
compared to a dialogue description lan-
guage. SYNICS had an input structure
based on BNF-like production rules,
whereas the dialogue description language
was based on an approach similar to state
transition diagrams. The results pointed to
the diagrams of the dialogue description
language as a much easier method of defin-
ing dialogue than production rules. The
explanation for this was that programmers
found writing production rules more diffi-
cult than creating transition diagrams. Pro-
duction rules are declarative, but most of
the programmers tested tended to think
and code procedurally.

3.7.2 Completeness of Representation

It is desirable to have a physical and nota-
tional process for recording results of the
dialogue developer’s mental process of con-
ceptual development. It appears that no
single representational technique will suf-
fice. Rather, a set of techniques is required
for recording behavioral, structural, and de-
tailed representation of both visible and
nonvisible aspects of human-computer
interfaces.

Further, these representational tech-
niques must serve all developer roles
throughout the system life cycle, applying
to the behavioral domain of human factors
experts and end-users, as well as the con-
structional domain of system developers.
Ideally, the techniques should have a sound
formal basis, be independent of tools
through which they may be implemented,
and be complete in their ability to represent
interfaces. For the dialogue developer, de-
tails can be overwhelming: end-user navi-
gation and sequencing, grammar and other
syntactic constraints, lexical rules for in-
put, appearance of displays (e.g., graphics,
positioning, clearing screen, character-
by-character cursor movement, echoes,
highlighting, color, movement of objects),
message content and format, device and
interaction style dependencies, data flow,
data typing, semantics, conditional and
adaptive behavior, scrolling, paging, win-
dowing, and SCI on.

Human-Computer Interface Development . 27

Representational needs even extend to
the development process itself. Several
kinds of information are usually lost in the
development process but are needed during
maintenance such as: Why was a particular
design decision made? How much time did
developers spend on various parts of the
system, especially the interface? What is
the version history of a particular feature?
How can the satisfaction of system require-
ments be traced to specific system
modules?

The problem of completeness in interface
representation is still unsolved, but new
techniques such as scenarios and proto-
types are successfully being used to aug-
ment existing, more formal methods.

3.2 Techniques for Representation of
Sequential Dialogue

3.2.1 BNF Representation

One of the best known systems for repre-
senting the syntax of a language is the BNF
[Naur 19631. BNF, however, has several
deficiencies in its power to represent lan-
guages, particularly its inability to repre-
sent context sensitivity. In addition, BNF
is difficult for humans to understand. It is
a highly structured, hierarchical metalan-
guage that results in a “fan-out” problem.
That is, nonterminals in an expression can
be replaced by more nonterminals through
several successive iterations before a ter-
minal symbol is finally reached. This multi-
level tree structure is difficult for human
beings to follow, since by the time the
leaves (terminals) are reached, the root
(highest level expression) and the language
structure may long be forgotten. It is con-
sequently very difficult to visualize sen-
tences in a language by looking at its BNF
definition.

Nonetheless, BNF has been used exten-
sively in representation of human-corn-
puter interfaces. Simulation systems have
been developed that accept as input BNF
production rules with associated actions
and produce a prototype of the human-
computer interface [Hanau and Lenorovitz
198&, 1980b].

Extended LL(1) grammars with added
graphical information have been used as

interface representations [Olsen 1983;
Olsen and Dempsey 19831 in the SYN-
GRAPH system for automatically gener-
ating interactive systems. SYNGRAPH
(discussed in Section 4) generates the end-
user interface for interactive graphics ap-
plications. The BNF-like definition of the
interaction language as well as Pascal code
that is invoked to perform the related se-
mantic actions are both used as input to
the generator. Output is a recursive descent
parser for the interaction language, as well
as a scanner and a screen manager. SYN-
GRAPH has produced the notion of an
“interactive pushdown automaton” as the
basis for describing the interface syntactic
components [Olsen 1984b]. Although this
system relieves a developer of having to
code the interface, the grammar that de-
scribes it must still be produced.

MIKE, an outgrowth of SYNGRAPH,
can be used to generate text-based inter-
actions; interaction languages are repre-
sented as Pascal procedures and functions.
Representing the interface with these
expressions differs significantly from the
SYNGRAPH grammatical approach and
has proved to be much easier to learn.

One variant of BNF, adapted specifically
to represent interaction languages rather
than static languages, is the multi-party
grammar [Shneiderman 19821. Features
that differentiate this extension from
standard BNF are the labeling of nonter-
minals with a party [i.e., either human (H:)
or computer (C:)] identifier, assignment of
values to nonterminals when appropriate,
and definition of a nonterminal that will
match any input string if no other parse of
that input is successful. The grammar per-
mits terminal strings entered by the end-
user to be fed back in a later part of the
dialogue. Other characteristics peculiar to
interactive displays, such as visual features,
are also specifiable. A small example for an
“open file” command is shown in Figure 10.
Note the nonterminals (in ()), labeling of
nonterminals (with H: or C:), and the dia-
logue variable (FILENAME) used in the
computer’s “OPEN-ACK” response to the
human.

BNF-based representation methods
should not be considered structural models
of human-computer interaction in the

28 * H. R. Hartson and D. Hix

<CM*> :: = < H : OPEN, cc : OPEN-ACK>
< H : OPEN> :: = OPEN c” : “LENAME>
< c : OPEN-ACK, :: 3 ,<H : Fn.ENAME>, IS NOW OPEN

Figure 10. Example using multi-party grammar rep-
resentation. (adapted from Shneiderman [1$X42]).
Reprinted with permission from Ben Shneiderman.
0 1982 IEEE

sense that we defined such models in
Section 2. The metalanguage symbols of
BNF do not provide a structural organiza-
tion or explanation of the nature of this
interaction. BNF notation (e.g., the multi-
party grammar) is, rather, a syntactic no-
tation for representing specific instances of
a dialogue.

3.2.2 State Transition Diagram Representation

State transition diagrams (essentially finite
state machines) constitute another formal
representation technique frequently used
for language definition. Whereas the pri-
mary means of creating BNF descriptions
is textual, state transition diagrams are a
graphical means of representing sequential
dialogue, using graph nodes for states and
arcs for sequencing of transitions among
states. Since conditions upon which tran-
sitions are made depend on end-user in-
puts, state transition diagrams can be used
for representation of interaction languages.

One of the earliest uses of state transition
diagrams for language representation was
in specification of a compiler for a program-
ming language [Conway 19631. Actions as-
sociated with each state transition indicate
what is to happen when the transition oc-
curs. An early use of state transition dia-
grams for interface representation is found
in Newman [19681. Use of state transition
diagram representations for the design of
interactive computer systems [Parnas
19691 evolved in response to the increased
need for consideration of human interac-
tion in the system design process. In par-
ticular, state transition diagrams specify
appropriate messages at each state of an
interactive system. Augmented transition
network (state transition diagrams supple-
mented with stacks) grammars have been
used to analyze natural language structure

[Woods 19701. Current research has now
progressed far beyond this point, but these
ideas were quite novel when first proposed.

Wasserman’s RAPID/USE [Wasserman
1980, 1982, 1985; Wasserman and Shew-
make 1985; Wasserman and Stinson 1979;
Wasserman et al. 19861 is a system for
representing not only the end-user inter-
face but an entire interactive information
system. Transition diagrams are used to
describe the language of the end-user and
for production of rapid prototypes [Was-
serman and Shewmake 19821. Jacob [1985]
presents the Military Message System
(MMS) as an example of a system devel-
oped using state transition diagrams, with
associated actions, as a formal representa-
tion technique for its interface. These rep-
resentations are then converted into system
prototypes. In both these approaches the
machine representation of the state tran-
sition diagrams is an interpretable textual
encoding in a “node and arc” language.

Figure 11 shows an example of a USE
transition diagram. Transition diagrams
can be produced, using an interactive tran-
sition diagram editor, and then be auto-
matically converted to the skeleton of the
textual code (i.e., the node names and con-
trol flow). Contents of the nodes are then
filled in by a dialogue developer using a
dialogue programming language. Figure 12
shows some of the corresponding textual
encoding for Figure 11.

Jacob’s [19851 representation of dialogue
is heavily based on semantic, syntactic, and
lexical levels, using separate diagrams for
each level. State transitions are associated
with an input or an output token, but not
both. That is, output is treated as a separate
token, rather than as a special action, al-
lowing representation of output dynamics.
Output tokens include prompts, acknowl-
edgments, and ethos. Through a process of
stepwise refinement, states are added to the
state transition diagrams, making repre-
sentation of the interface more precise. The
resultant representations are detailed and
voluminous, providing device independence
and screen and cursor control. Messages
can be constructed independently of node
definitions. Subdiagrams are used to con-
trol complexity by providing modularity

Human-Computer Interface Development

Figure 11. USE transition diagram (from Wasserman and Shewmake [I!%, p, 1%)). Re-
printed with permission from the authors and Ablex Publishing Corporation.

and an ability to decompose designs into
levels of abstraction. Both Wasserman’s
and Jacob’s approaches are presented in
more detail in the Appendix.

A representation technique that is simi-
lar to state transition diagrams was used to
describe primarily sequential dialogue in
early versions of the Dialogue Management
System. The SUPERGory Methodology
And Notation (SUPERMAN) embodies
both data flow and control flow in a unified
graphical system representation [Yunten
and Hartson 1985). SUPERMAN repre-
sents design of an interactive system with
a “supervisory structure,” which is a net-
work of “supervisory cells.” A supervisory
structure is shown in Figure 13. Each cell
contains a single “supervisory function”
and a “supervised flow diagram” (SFD) rep-
resenting both control flow and data flow
among its dialogue and computational
functions.

The graphical function symbols of
SUPERMAN reflect SUPERMAN’s em-
phasis on separation of dialogue from com-

putation. A circle inscribed in a square is
a dialogue-computation function, always
a supervisory function, that eventually
decomposes into pure dialogue and pure
computation. A dialogue transaction, rep-
resented by a circle, provides communica-
tion between human and computer and is
implemented by a dialogue developer. A
computational function, represented by a
square, is a software function that performs
only computation and is implemented by
an application programmer. Because the
notation used in SUPERMAN to represent
the design is a graphical programming lan-
guage, an executable form of an application
system’s control structure and dialogue
can be directly compiled from the super-
vised flow diagrams. This graphical repre-
sentation is also interpreted for rapid
prototyping.

Functional requirements of human-com-
puter interaction in Casey and Dasarathy
[1982] are expressed in terms of a finite
state machine (or state transition diagram).
Their taxonomy of interfaces is separated

30 - H. R. Hartson and D. Hix

diagram irg entry start exit quit

node start
es, 12,w, c_‘lnteractive Restaurant Guide’.sv,
rQ5, ‘Please make a choice: ‘,
r+ZclO. ‘1: Add new restaurant to database’,
r+z,c10;
r+*,c10.
+,c10,

node help
cs, r5,eo.

r+1, co,

r+1, CO,

r+1, CO,

r+1, CO,

r+*, co,

‘2: Give review of a restawant’,
‘3: Read reviews for a given restaurant’,
‘4: Help’, r+Z,clO, ‘5: Quit’. r+3.c5, ‘Your

choice:‘, mark_A

‘This program stores and retrieves infor-
mation on’,
‘restaurants, with emphasis on San Fran-
cisco.‘,
‘You can add or update information
about restaurants’.
‘already in the database, or obtain infor-
mation about’,
‘restaurants, including the reviews of
others.‘,
‘To continue, type RETURN.’

node error
r$-l,rv, ‘Illegal command.‘, SY, ‘Please type a

number fmm 1 to 5.‘,
1% ‘Press RETURN to continue.’

node clean
I$ - l,ClJ$,Cl

node wakeup
r$,cl,rv,‘Please make a cboice’,sv, tomark_A

node quit
cs, ‘Thank you very much. Please try this program

again’,
nl. ‘and continue to add information on restau-

IB”tS.’

arc ~tsrt single-key
on ‘1’ to (addnew)
on ‘2’ to (giverev)
on ‘3’ to (readrev)
on ‘4’.‘?’ to help
on ‘5’ to quit
alarm 30 to wakeup
else to error

arc (addnew)
skip to SUR

are (readrev)
skip to start

are (giverev)
skip to start

Figure 12. Some corresponding textual code for Fig-
ure 11 (from Wasserman and Sbewmake 11985, P.
2OOjl. Reprinted with permission from the authors
and Able Publishing Corporation.

into classes of stimuli and responses. The
addition of checkpoints to validate input
and timers for performance measurements
extends the model. Application-specific vo-
cabulary and semantics are used to specify
system requirements in a Real-Time Re-
quirements Language (RTRL). A compar-
ison of RTRL to an informal English prose
version of the requirements specification
for a system showed RTRL to produce
more complete, consistent specifications.

General Transition Networks (GTNs)
also use state transition diagrams as the
basis for describing an interface [Kieras
and Poison 19831. GTNs have been pro-
posed as a method both for describing the
behavior of an interactive system and for
developing a simulation of its end-user in-
terface. Nodes of GTNs represent states,
arcs are labeled with both conditions and
actions, and examination of the conditions
is done in a specified order to trigger tran-
sitions. The GTN’s key feature, according
to Kieras and Poison [1983], is its ability
to describe hierarchies of modes or states
of the system. The work done with GTNs
appears to be oriented mostly toward task
analysis. Although Kieras and Poison
[I9831 claim that CTNs are powerful
enough to describe very complex systems
easily, the example given in their paper is
“a simplified form of portions” of a specific
word processor.

State diagrams are also used in SYNICS
to represent dialogue and global control
[Edmonds 19811. Many others have used
state transition diagrams to represent the
human~computer interface [Denert 1977;
Dwyer 1981; Green 19811. The latter uses,
however, have been theoretical and appar-
ently have not applied the diagrams to any
sizable real-world application.

Interface representation methods that
use state transition diagrams should not be
considered structural models of human-
computer interaction as we described such
models in Section 2. Just as a BNF meta-
language does not provide a general, struc-
tured organization of the nature of this
interaction, neither do the symbols used in
state transition diagrams. Like BNF, the
diagrams are used to represent specific
dialogue instances. They are actually a

ACM Computing Surveys. “0,. 21, NO. 1, March 1989

Human-Computer Interface Deuelopment . 31

graphical notation for representing control
flow. Without the guidance of a structural
model, however, semantic control is often
mixed with lexical and syntactic control at
the same level of abstraction. This can
cause complexity problems that adversely
affect dialogue independence.

3.23 Dialogue Language Representation

Dialogue can also be effectively represented
by a high-level “dialogue programming lan-
guage.” Such languages have constructs for
representing dialogue-specific features,
such as visual attributes, positioning, and
devices. For example, a node of a
RAPID/USE state transition diagram can
represent a screen of an alphanumeric ter-
minal device. The display and end-user in-
put for a specific screen are described in a
textual language, one line at a time. To

illustrate,

12, rv, ~80, ce
‘Interactive Restaurant Guide’, sv

denotes that at row 2, in reverse video and
centered within 80 columns, the screen is
to display “Interactive Restaurant Guide”
(as a title for a menu) and then reset to
standard video.

IBM’s Interactive System Productivity
Facility (ISPF) relies almost entirely on a
dialogue programming language as a means
for representing dialogue. Each “panel”
(screen) is a procedure written in a textual
language designed for representing dia-
logue. A panel can call and be called by
other procedures. A typical panel has a set
of actions it performs when the panel is
entered, a body that produces the specific
dialogue of the screen, and some actions it
performs as it leaves the panel. Panels are

ACM Computing Surveys. Vol. 2,. No. 1. March ,989

32 - H. R. Hartson and D. Hix

invoked by calling a display service (e.g., a Eventhandler event-handler-name Is

SELECT service for a menu panel). The Token

design for functions such as input valida-
token-name event-name;

tion, end-user navigation among fields of a :
form, and editing of input values is largely Var
predetermined and hard wired. type variabkname = initialLvalue;

3.3 Techniques for Representation of
Asynchronous Dialogue

3.3.1 Event-Based Representation

Most techniques for representing asyn-
chronous dialogue are variations of event-
based mechanisms (see Section 7). Green
[1986] surveyed three formal classes of
techniques for describing dialogue, based
generally on transition networks, gram-
mars, and events. Green concludes that
events have the greatest descriptive power,
a conclusion consistent with the fact that
event-based mechanisms can be used to
represent both sequential and asynchron-
ous dialogue.

Design of the human-computer interface
using the University of Alberta UIMS
[Green 19851 is built around representation
through event handlers that are described
in an “event language” similar in syntax to
the C programming language. The text of a
program written in the event language con-
tains at least one event handler definition.
At run time, instances of the event handler
are created. The skeleton for an event han-
dler declaration is shown in Figure 14. The
first part of the declaration indicates input
and output tokens the handler can process.
The second section consists of declarations
of local variables, and the third section
contains event declarations, each of which
consists of one or more C statements. The
visual part of the interface is represented
through use of an interactive layout facility
built on a window-based graphics package.
The University of Alberta UIMS is based
generally on the Seeheim model (see Sec-
tion 2.4). Its event-based interface repre-
sentation-because it is so similar to C-
may not, however, be preferable to simply
coding the representation directly in C [Hill
19871. This would seem to limit its usage
to C programmers, a requirement that ex-
cludes many dialogue developers.

Event e”e”tLname:typpe (
statements

I
end event-handler-name:

Figure 14. Skeleton of an event handler declaration
(adapted from Green (19851). Reprinted with the kind
permission of Mark Green.

An approach to representing multi-
thread, event-based dialogue is based on A
Language for Generating Asynchronous
Event handlers (ALGAE) [Flecchia and
Bergeron 19873. ALGAE uses an event-
based, message-passing mechanism within
a multiprocess execution environment for
concurrency. An event is represented by a
structure that has a type and a value. In-
terruptible dialogue is accomplished by
stacking. The ALGAE run-time environ-
ment queuing system handles the message
passing. As in the University of Alberta
UIMS, event specifications are written in a
programming-like language and are used to
generate event handlers, which are used to
accept each kind of input.

The Event-Response System (ERS) has
been used as the basis for represent-
ing the syntax of multi-thread dialogues
[Hill 19871. An Event-Response Language
(ERL) is based on representation of system
responses to events that occur as the result
of end-user actions. Complex dialogue is
represented as a set of simpler dialogues
running in parallel, using a compact, struc-
tured representation technique based on
production rules. An end-user input event
can render a production rule “firable,” and
searching for firable rules determines state
transitions within deterministic finite au-
tomata. The ERL has been incorporated

Human-Computer Interface Development l 33

into the Sassafras interface development
system.

3.3.2 Other Approaches

An unusual paradigm for representation of
the interface is embodied in the “by dem-
onstration” mechanism of the Peridot
UIMS [Myers 19871. The dialogue devel-
oper represents how input devices are to be
handled by showing examples of their use.
Sample values for parameters and actions
allow Peridot to infer the general input
operation and generate the corresponding
code automatically. Peridot can be used to
represent devices found in direct manipu-
lation interfaces, including mouse and
touch tablet.

The User Interface Development Envi-
ronment WIDE) [Foley et al. 19881 uses a
knowledge base for representing the hu-
man-computer interface. Several “sche-
mata” or “frames” are used for the
knowledge base, including schemata for ob-
jects, actions, parameters, pre-conditions,
and post-conditions. Pre-conditions repre-
sent predicates that must be true for an
action to occur, and post-conditions exist
after an action is executed. Transfor-
mations can be applied to the representa-
tions in the knowledge base to generate
alternative interfaces with equivalent
functionality.

3.4 Other Techniques for Representation

An approach to interaction language design
and representation of interactive computer
systems has been introduced in the Com-
mand Language Grammar (CLG) [Moran
19811. Even though the CLG model is a
task-oriented model and a structural model,
it can also serve as a model for dialogue
representation. In fact, the CLG formalism
creates a framework for describing many
aspects of the end-user interface, not
merely representation of the interaction
language itself. The CLG partitions an in-
terface into three major components, as
shown in Figure 15. Each component is
divided into levels, each of which is a re-
finement of previous levels. At the highest
level, the “conceptual component” contains

Conceptual Component: Task Level
Semantic Level

Communication Component: Syntactic Level
Interaction Level

Physical Component: (Spatial Layout Level)
(Device Level)

Figure 15. Levels in the CLG (from Moran [1981,
p. 61). Reprinted with the kind permission of Thomas
P. Moran.

the tasks (“task level”) and abstract con-
cepts (“semantic level”) from which the
system is derived. The “communication
component” is composed of the command
language (“syntactic level”) and the dia-
logue structure (“interaction level”). At the
lowest level, the “physical component” con-
tains the descriptions of the input/output
devices and display graphics (“spatial lay-
out level”) and all other physical features
(“device level”).

The description of each level contains
procedures, written in a very high-level
programming-language-like notation, that
describe all tasks addressed by the system
in terms of the actions available at that
level, through a process of stepwise refine-
ment. A small message-processing system
is given as an example; its description at
all levels takes many pages.

Moran [1981] describes how CLG can be
considered from three different viewpoints.
A linguistic view sees CLG as an analysis
of the structure of a system’s interface (i.e.,
a structural model). A psychological view
sees CLG as describing the knowledge an
end-user has about a system (i.e., a task
analysis model). A design view sees CLG as
a representation mechanism for system de-
sign (i.e., a representation model). CLG
thus overlaps all three types of modeling
associated with human-computer inter-
faces. The CLG representation is thorough,
providing a representation of an interactive
system ranging from the end-user’s cogni-
tive level to the system’s device level. It
appears, however, to be primarily theoreti-
cal in nature and not executable. Its major
contribution is its thorough addressing of
many issues involved in describing an end-
user interface at several levels. In Browne
et al. [19861, CLG is extended to make the
interface model sensitive to context and

ACM Computing Surveys, Vol. 21, No. 1, March 1989

34 l H. R. Hartson and D. Hix

end-user characteristics, such as expertise
level. .

Another proposal for formal representa-
tion of human-computer interfaces is use
of first-order logic using the rule-based lan-
guage Prolog [Roach and Nickson 19831.
This method of modeling, designing, and
developing dialogues allows a uniform syn-
tactic and semantic description of the in-
terface. Because Prolog translators are
available, this representation is also exe-
cutable and allows for rapid specification,
implementation, and modification of an in-
terface. An application example involving
representation of a carrier-based air traffic
control system took about 100 Prolog rules
versus more than 5000 lines of Pascal code.
Although the idea of using Prolog as both
a representation and an implementation
tool is interesting, the complexity of learn-
ing to create Prolog programs needs to be
investigated; first-order logic is certainly
not common knowledge.

In GUIDE [Granor and Badler 19861,
dialogue is represented interactively in
terms of contexts. A “context” contains
interaction tasks, application-generated
pictures, application actions, and control
decisions. Actions are invoked by use of
tasks. Contexts are sequenced by decisions
and may be stacked.

3.5 Representation as Part of Interface
Evaluation

Interface representation has also been used
to facilitate experimentation with human
factors in interactive displays [Feldman
1981; Foley 19811; languages and metrics
for interface representation and ergonomic
evaluation [Bleser 1981; Reisner 19811 are
of particular interest. Because metalan-
guages (e.g., BNF based) have been used to
provide formal representations of at least
some aspects of interfaces, research has led
to the use of formal grammar description
as a prediction mechanism for use in eval-
uating alternative human-computer inter-
face designs [Bleser and Foley 19823
Reisner 1981,1982]. For example, Reisner’s
action grammar is used to describe both
cognitive and input actions, which are then
converted to a predicted performance time
or error representation. Sentences are cre-
ated that represent particular tasks or end-

user classes (e.g., “move cursor” = time to
move cursor). Then, a set of “prediction
assumptions” is compared to the sentences
to determine resultant comparative times.
Metrics are applied to the grammar itself
to compare alternative interface designs
and to find inconsistencies that might.
cause end-users to make mistakes. Such
evaluations using formal language repre-
sentations allow early identification of de-
sign inconsistencies that are likely to lead
to end-user errors and allow analysis of the
interface for incorporation of human fac-
tors principles [Reisner 1983a, 1983b]. Hu-
man factors experiments are used to
validate this analysis.

Another formal approach is intended
specifically to describe the human factors
of an interface [Bleser and Foley 1982;
Foley 19811. It defines the lexical and syn-
tactic aspects of both the input and output
of an interface. The input definition defines
tokens and their relationships, whereas the
output definition defines screen character-
istics and content. Once the interface is
formally represented, evaluative metrics
are applied to the representation in order
to determine potential design flaws.

Rule-based “expert” dialogue tools
[Fischer 1982; Roach et al. 19821 guide
dialogue developers in evaluating the appli-
cation of human factors considerations,
graphic design principles, and guidelines
for effective communication in the design
of their interfaces. In DIADES [Hoffmann
19851 the editor used for producing inter-
face design representations also collects
dialogue design decisions. Human factors
design guidelines, stored in a knowledge
base, are used by a Prolog-based expert
system to evaluate quantitatively how well
the guidelines are met by a specific design.
Also, the Rapid Intelligent Prototyping
Language (RIPL), discussed in the Appen-
dix, has both a consultation and an evalu-
ation expert system that use a knowledge
base derived from the Smith and Mosier
[19861 dialogue design guidelines.

4. INTERACTIVE TOOLS FOR HUMAN-
COMPUTER INTERFACE DEVELOPMENT

People working in the field of human-
computer interaction seem to be very tool

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 35

oriented. Many recent articles in the liter-
ature describe tools for development and
testing of human-computer interfaces.
This is undoubtedly the first wave of an
even more comprehensive phenomenon, re-
lated to the fact that people who are devel-
oping human-computer interfaces for
others are not content to have poor quality
interfaces for their own work.

Interactive tools for human-computer
interface development are often used to
automate the process of interface represen-
tation. Dialogue developers also use these
tools for other activities, including proto-
typing, evaluation, analysis, and implemen-
tation. Outputs from these tools are usually
either program code that can be executed
to produce the interface or declarative de-
scriptions (e.g., database records) that can
be interpreted to produce the interface. In-
terface development tools often include
state diagram editors, graphical editors,
text editors, database management sys-
tems, and even rapid prototypers. Unfor-
tunately, the tools that are easiest to use
are often the most limited in the kinds of
interfaces they produce. Some tools were
presented in Section 3 as examples to high-
light various representation techniques
only. This section presents tools in a
broader context.

Terminology for interface development
tools has not yet stabilized. Drawing on the
most common use of the terms in the lit-
erature, we shall use the generic term tool
to refer to anything from a complete inter-
face development environment to a library
routine for a single small interface feature.
A User Interface Management System
(UIMS) is a set of high-level interactive
programs for designing, prototyping, exe-
cuting, evaluating, and maintaining end-
user interfaces, all integrated under a single
dialogue development interface. Unfortu-
nately, the UIMS appellation has been
devalued by casual use, referring to al-
most any software tool related to human-
computer interfaces. The term is now used,
for example, to refer to a program that
merely helps build screens or that only does
interface prototyping or involves interac-
tive graphics. Finally, a toolkit is a library
of callable program routines to implement
lower level interface features (e.g., display

an object, accept input) that can be called
from within a UIMS or from any other
program code.

4.1 Requirements for Interface Development
Tools

As experience with tools for developing
human-computer interfaces increases,
more will be understood about the require-
ments for such tools. Some desired char-
acteristics for interface development tools
include the following:

l Functionality. Human-computer inter-
faces are very complex, consisting of a
large variety of features and devices.
Tools must therefore be able to produce
complex interfaces containing this vari-
ety of features and devices. Functionality
refers to what a tool can do, that is, what
interface styles.and techniques it can be
used to produce and what input/output
devices can be used in the interface a tool
produces. The greater the functionality
of a tool, the more types of interface
features and devices it can be used to
incorporate into the application inter-
faces it produces.

l Usability. Interactive tools for develop-
ing human-computer interfaces are com-
plex software systems, often in relation
to their functionality. Such tools for
developing human-computer interfaces
have complicated human-computer in-
terfaces themselves. Usability of these
tool interfaces is an important issue for
productivity and satisfaction of the dia-
logue developers who use them.

l Completeness. A requirement that car-
ries over directly from techniques (see
Section 3.1) to tools and related to func-
tionality, completeness is elusive. Con-
sider a small detail such as a field for a
“date” value in a MM/DD/YY format.
There are lexical rules (e.g., ‘DD’ must
be an integer with a value between 1 and
31), syntactic rules (e.g., governing the
order of MM, DD, and YY inputs), and
semantic rules (e.g., if MM = 02, then
01 I DD 5 28, except for leap year). This
one small data field of one screen of a
whole interface exemplifies the large

ACM Computing Surveys, Vol. 21, No. 1, March 1989

36 l H. R. Hartson and D. Hix

number of details that must be repre-
sented by a dialogue developer.

l Extensibility. Because absolute com-
pleteness is unattainable in interface de-
velopment tools, tools must be extensible.
Dialogue development tools are usually
more specialized than programming lan-
guages. Although this specialization
makes a tool easier to use for its specific
purpose, it narrows the scope of that
tool’s applicability. Since the possibilities
for human-computer interfaces are un-
limited, specific tools cannot address
every need. There are at least two ways
tools can be made extensible to handle
new interface features, interaction styles,
and devices: The tools themselves can
be easily modified, or the interface rep-
resentations produced by the tools can
be easily modified.

l Escapability. In cases in which the tool
is inadequate and extension is not feasi-
ble (e.g., a rarely used interface feature),
it should be possible to escape from the
tool and use ordinary programming to
produce the interface feature. Use of tools
must therefore be compatible with use of
programming in the same environment.
Without this ability to escape from the
tools, the unavoidable limitations of the
tools become dead ends for the dialogue
developer.

l Direct manipulation. Direct manipula-
tion is particularly desirable in the dia-
logue developer’s interface for interface
development tools. The’ dialogue devel-
oper works directly with visual (graphical
and/or textual) representations of the
end-user’s task-related objects-“visu-
ally programming” [MacDonald 1982]-
and results are immediately visible and
easily reversible. As indicated by Backer
et al. [1986], the problem-oriented visu-
alization offered by a direct manipulation
style tool interface aids in understanding
of problems. A taxonomical survey of vis-
ual programming, programming by ex-
ample, and program visualization is given
in Myers [1986].

l Integration. A set of tools for develop-
ing interfaces should have a single inte-
grated interface for accessing all the tools
and a uniform interface style across all

tools. Further, tools need to have a com-
mon output representation to assure
composability of tool products within an
interface. An underlying database man-
agement system is a desirable repository
for storing tool output in a common
format.

l Locality of definition. For consistency in
an interface under development, it is de-
sirable for a dialogue developer to be able
to give localized definitions that apply to
large parts (or all) of an interface. For
example, it is useful to represent once,
for all menus in the application system,
a standard format of the screen title and
layout, color, and position of various
types of objects on the screen. If an at-
tribute is modified, updating a single rep-
resentation in a single place can
accomplish the change for the entire ap-
plication system. These capabilities often
are found in tools as a design template or
“shell,” giving default or initial values for
various object attributes. Object-oriented
implementation environments (see Sec-
tion 4.5) are excellent for supporting this
capability because of their strong inher-
itance properties within a hierarchical
structure of object definitions.

l Structured guidance. Without help
from the tools in organizing the interface
development process, a dialogue devel-
oper can be confronted with a confusing
mass of detail. Because a structural, de-
scriptive model of the human-computer
interface (see Section 2) explains the ele-
ments and their relationships in the in-
terface, it is also useful as a framework
for interface representation. Other means
of developer guidance, such as built-in
tutorials, computer-aided instruction,
and on-line help, are also desirable. Such
materials should include liberal use of
examples.

4.2 Application Generators and Other
Early Tools

Some of the early tools for human-com-
puter interface development could be clas-
sified as application generators and display
managers. These tools, although addressing
the problems of interface design, lack a

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 37

generality in approach. Application gener-
ators and display managers are not based
on a system development methodology, nor
do they involve comprehensive dialogue
modeling. In addition, they are typically
oriented toward the development of a spe-
cific format or interaction technique (e.g.,
menus or forms). They are also often lim-
ited to specific devices and tailored to
certain classes of applications.

IBM’s Interactive System Productivity
Facility (ISPF) [1983, 19851 and Develop-
ment Management System [1983] are
archetypical examples of commercial form-
filling and menu-oriented display manage-
ment tools. ISPF, tailored specifically to
the characteristics of the IBM 3270 display
terminal and MVS/TSO or VM/CMS op-
erating systems, is used to construct display
“panels” (screens) for interactive applica-
tions. It provides services to support dia-
logue in various host environments. When
used in conjunction with the Program De-
velopment Facility (PDF), ISPF provides
an application generator.

Formerly (before October 1983), ISPF
and PDF were combined in a predecessor
product called the System Productivity Fa-
cility (SPF) [Maurer 19831. Dialogue man-
aged by ISPF consists mainly of selection
panels (menus), functions (command pro-
cedures such as TSO CLISTs, CMS EXEC
files, or programs written in PL/I, ASM,
COBOL, or FORTRAN) and data entry
panels (form filling). The menu is displayed
and the end-user’s choice is accepted, caus-
ing a particular EXEC file or program to
be invoked. ISPF also includes features
for menu-tree traversal, split screen man-
agement, programmed function key inter-
pretation, and support for producing
application help facilities. ISPF panels are
analogous to program procedures, able to
call or be called by other panels or proce-
dures. Since data communication between
the end-user’s screen and the program is
handled by variables and tables, data struc-
tures for these must be declared in both the
program and ISPF. Thus, use of ISPF is
not for a dialogue developer; dialogue de-
velopment is still a programming activity.
These tools result in at least a superficial
separation in that dialogue is contained in
separate procedures, but there is no model

or methodology to guide the process. None-
theless, of the more than 12,000 CMS in-
stallations, ISPF is the only software
product that runs on every one, attesting
to the need for such tools. An advanced
version of ISPF called E-Z Vu is now avail-
able for personal computers.

IBM has a similar product, the Devel-
opment Management System [1983] (nee
Display Management System), available
for use with VM/CMS and CICS/VS-DOS
and especially suited for ADP-type appli-
cations. Screen and function management
are similar to those of ISPF, including a
multiscreen paging ability. Data entry
screens provide for record insertion and
updating. An application programmer de-
fines files and records, displays, and, to
some extent, dialogue sequencing logic.
Data communication is handled by pro-
grammer-defined data structures, just as it
is in ISPF. Such application generators
have been shown to reduce both the time
to develop applications and the number
of errors in the implementation [Can-
ning 19831. Application skeletons can be
stored and adapted for sharing in other
applications.

Another IBM system, REXX/FSX [IBM
VM/SP 19831, gives limited graphics sup-
port to a dialogue developer. FSX provides
the graphics support package for textual
screens. REXX, a procedural command
language similar to the VM/CMS-sup-
ported PL/I, cooperates with application
routines and the FSX graphics. A dialogue
developer must program dialogue as REXX
procedures. Nevertheless, IBM reports in-
creasing numbers of systems developed
with REXX/FSX end-user interfaces.

A number of other specialized tools for
solving specific end-user interface devel-
opment problems (still, however, lacking
modeling and methodology) arose in the
late 1970s and early 1980s. As an example,
Data General’s PRESENT Information
Presentation Facility [19821 provides the
capability to retrieve data from files and
databases and to format that data into re-
ports and graphical displays. Specialized
nonprocedural commands are provided for
producing pie charts, bar charts, and report
formats. Digital Equipment Corporation’s
Form Management System (FMS) [DEC’s

ACM Computing Surveys, Vol. ‘21, No. 1, March 1989

38 l H. R. Hartson and D. Hix

VAX11 FMS 19841 simplifies development
of application systems that have form-
filling interfaces. A menu-driven inter-
active form editor allows development
of forms by directly manipulating parts of
the form.

An Interactive Extension Facility (IEF)
[Helander 19811 is a display manager that
organizes human-computer interactions
into “sessions” to facilitate end-user activ-
ities with system objects. Basically, IEF is
a set of simple tools for providing “add-on”
interfaces to connect the end-user to oper-
ating system commands and utilities. An-
other example of a system that provides for
some dialogue design is Screen Rigel [Rowe
and Shoens 19831, a set of input/output
features for Rigel, a high-level database
programming language. Screen Rigel, how-
ever, is intended for use by a database
application programmer, not a dialogue
developer, and the facility is not contained
as a part of a broader system design
methodology.

A Dialogue Generator (DIAGEN) [Kai-
ser and Stetina 19821 is a generalized soft-
ware tool for creating an interactive
interface that separates the dialogue from
the dialogue-driven application program. A
specialized DIAGEN language is used by a
dialogue developer to “program” a scenario
that describes the dialogue; this scenario is
then interpreted. A single run-time mes-
sage for erroneous end-user input was hard
wired, the system could only respond
“Wrong answer. DIAGEN repeats the
question,” the whole sequence is repeated.
Several of the above, and other, commer-
cially available software tools for interface
management are compared in a survey
[Britts 19871.

4.3 User Interface Management Systems

4.3.1 Historical Perspective

The term “user interface management sys-
tem” (UIMS) appears to have first been
used by Kasik [1982], although the idea
existed earlier. Most early literature on
UIMS was not concerned with the end-
user, human factors of interfaces, or meth-
odologies for software or interface devel-
opment. In particular, early UIMS work

I
I User Interface I

I Application I
I I
I Manager I Program
,-___________-_-‘---------~~~~~~
I I
I Graphics System

Figure 16. User interface management system model
(from Graphical Input Interaction Technique [1983,
p. IS]). Reprinted with permission from James J.
Thomas.

did not emphasize human-computer inter-
face development activity. Rather, its focus
was on support-especially through graph-
ics software-for execution of the interface
[GIIT 1983; Guedj et al. 19801. Early
UIMS-produced interfaces were specified
by special languages or grammars (e.g.,
BNF-style definitions) or, more simply, by
directly coding the interface in a program-
ming lan,guage rather than by interactive
Thus, early UIMS tools were strictly tools
for programmers.

The summary report of the Graphical
Input Interaction Technique Workshop
[1983] illustrates this emphasis on execu-
tion by stating that “the role of a UIMS is
to mediate the interaction between an end-
user and an application. . . .” Also illustrat-
ing the emphasis on graphics, it says that
the “model underlying most of the presen-
tations at both this workshop and Seillac
II [Guedj et al. 19801 [is] a ternary division
into an application program, a user inter-
face management system (UIMS), and a
graphics system.” This model is shown in
Figure 16. In this model, connection to the
end-user is not shown. For interface imple-
mentation, this model calls for a “UIMS
manager” to accept and store interface rep-
resentations. Other diagrams of UIMS also
sometimes emphasize run-time aspects, as
in, for example, Figure 1 of Hayes et al.
[1985].

A “reference model” [Lantz et al. 19871
for the implementation of interactive soft-
ware, shown in Figure 17, is a model that
is more developed than that of Figure 16.
It includes consideration of concurrent
tasks, distribution, and multiple media.
The emphasis of this reference model is
still, however, execution and not design,
and separation suffers because all layers of
the model appear to have access to devices.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 39

l pplkwtlolw
(includlng workstatlon manrgcr)

I
dlalogum mcmagn

I
woduttilon qont

dovlcss
I \

(a)

Appllcatlon Q workatrtlon
mmnrgcmont

Dl&qu Menegr

I Workstation Agent

Hardwan Dovlcor

(b)

Figure 17. Reference model: Two views: (a) layered view;
(b) modular view, with interfaces (from Lank et al. [1987,
p. 881). Reprinted with permission from the authors and
publishers.

The model does represent all possible Later, the UIMS view began to broaden
information flows for all possible applica- [e.g., Olsen et al. 1984; Tanner and Buxton
tions, not just the flow for one application. 19841 to include considerations of the end-
Both this reference model and the GIIT user and the dialogue developer. Although
model could also be considered architec- much of the recent UIMS literature still
tural models of the application system (see refers to programming of the interface-
Section 2.4). and it is unlikely that interfaces can ever

ACM Computing Surveys, Vol. ‘21, No. 1, March 1989

40 l H. R. Hartson and D. Hix

b Computational
Component

I*

Environment

Figure 18. Typical basic structure of a UIMS.

be constructed totally without program-
ming-there is much emphasis on a non-
programming role and design-time tools for
the dialogue developer.

The typical basic structure of a UIMS is
illustrated in Figure 18, along with the
appropriate roles involved. A dialogue de-
veloper interacts with automated tools
for developing the application system’s
human-computer interface; these tools
produce an internal stored representation
of the dialogue that is executed at run time
to produce the interface. An application
programmer produces the application sys-
tem’s computational software, providing its
functionality. These two developer roles
communicate and coordinate their de-
velopment efforts. End-users and system
evaluators give feedback about the inter-
face and system functionality. The entire
process shown in Figure 18 forms a cycle of
iterative refinement. The remainder of this
section describes, generally in chronologi-
cal order, representative examples of sys-
tems to show the diversity of UIMS-like
tools. Where appropriate, the description
highlights unique or unusual features of the
tools. Several of these tools are presented
in more detail in the Appendix.

4.3.2 Examples of UIMS

The toolkit UIMS (formerly TIGER)
[Kasik 19821, discussed in the Appendix,
uses a “dialogue programming language,”
which extends Pascal specification and dec-
larative structures while retaining Pascal’s

ACM Computing Surveys, Vol. 21, No. 1, March 1989

control structures. The MENULAY [Bux-
ton et al. 19831 UIMS design and imple-
mentation tool is a high-level language
preprocessor that translates dialogue
(graphics and menus) design code written
by an application programmer into C lan-
guage programs that, when executed, pro-
duce the graphics .and menus of the
interface.

In the Abstract Interaction Handler,
Foley [1981] and Feldman and Rogers
[1982] advocate separation of the end-user
front end from the system semantics, even
to the point of being able to customize
interfaces for individual end-users [Feld-
man 19811. The independence of their
dialogue from system semantics allows ex-
perimental evaluation of various interfaces
while holding the underlying computa-
tional system constant. A successor to
AIH, the GWUIMS, is presented in the
Appendix.

The Dialogue Management System
[Ehrich and Hartson 1981; Hartson et al.
1984; Hix and Hartson 19861 is a research
UIMS that has been developed as a test
bed for interface management concepts. It
contains an integrated set of interface
development tools called the Author’s In-
teractive Dialogue Environment, or AIDE,
in early versions of DMS. These tools
embody a structural model, methodology,
representational notation, life cycle man-
agement, and rapid prototyping. Tools in-
clude a display tool, several menu tools, a
forms tool, and primitives libraries. In ad-
dition it contains several generic tools for

Human-Computer Interface Development l 41

developing interfaces not supported by
specific tools. DMS itself has a direct ma-
nipulation interface. The DMS approach to
interface development considers human-
computer interface management as an
integral part of software engineering and is
detailed in the Appendix.

The SYNGRAPH (SYNtax directed
GRAPHics) [Olsen and Dempsey 19831
and MIKE (Menu Interaction Kontrol En-
vironment) [Olsen 1984a] UIMS use tex-
tual languages for dialogue representation
and code generation for dialogue implemen-
tation. Input to SYNGRAPH is a BNF
grammar that a programmer (not a dia-
logue developer) uses to describe the com-
mand language in terms of menu items,
functir n buttons, valuators, and a single
~ocato, device. From this description, a seg-
ment of Pascal code is generated and then
compiled-along with some standard inter-
face code and the application’s seman-
tic code-to create the final interactive
program.

A key issue tested by SYNGRAPH is the
automatic allocation of screen space based
on the interface description grammar. The
programmer can divide the dialogue into
levels or modes, each of which is character-
ized by a menu or set of enabled devices.
The software then analyzes each level,
determines what interactive resources are
needed, and allocates them appropriately.
This approach was not very satisfying,
however, because of its rigidity and the
indirectness of defining graphics with a tex-
tual language. In SYNGRAPH 2 (now
called GRINS) [Olsen et al. 19851, end-
users seem to prefer a layout editor pro-
vided for performing the display layout
functions. Another SYNGRAPH emphasis
is error recovery. In the interface descrip-
tion grammar, every nonterminal item
definition can have a “cancel” production
that is entered whenever the cancel button
is selected. This allows the semantics
programmed in the computational code to
perform any recovery needed.

MIKE [Olsen 1984a] was created in
response to the large amount of effort
required to teach programmers how to use
SYNGRAPH. MIKE is based on command
procedures that define the set of interactive

commands. Initially the programmer gives
MIKE a list of procedures (functions) and
the types and names of their parameters.
An initial interface simply displays the
names of all procedures in a menu and
allows the end-user to select a procedure by
typing any unique abbreviation of the pro-
cedure’s name. The end-user is then
prompted for the first parameter and is
given a menu of all functions that return
that parameter’s type as their result. This
process continues until a complete expres-
sion has been input, at which point the
appropriate procedures are called to exe-
cute the semantics. This approach is simple
to teach to programmers but is not very
graphical. MIKE has a profile editor that
allows the interface to be interactively tai-
lored into a more acceptable form. The
profile editor can edit the’ names of com-
mands to more end-user acceptable terms;
map commands to function buttons, graph-
ical icons, or textual prompts; and organize
commands into menu trees for a more suit-
able structure.

State transition diagrams provide an
ideal graphical language to be supported by
direct manipulation dialogue development
tools. An example is seen in the Transition
Diagram Editor (TDE) [Mills and Wasser-
man 19841 of RAPID/USE (previously dis-
cussed in Section 3). The TDE is a
graphical editor for stat.e transition dia-
grams, based on menu selection using a
mouse and keyboard. Because the TDE
knows about the connectivity of nodes and
arcs being created, it can automatically do
some of the formatting. This allows the
system designer to concentrate on diagram
semantics. To create a node, the designer
points with the mouse to the desired screen
position. To create an arc, the designer
points to the nodes to be connected, and
the TDE draws the lines and arrowheads.
Contents of the nodes, which contain, for
example, the dialogue language code for
displaying a menu, are created using a text
editor. The TDE directly generates USE
transition diagram language descriptions
for the RAPID/USE Transition Diagram
Interpreter (TDI). Other systems use sim-
ilar approaches to interactive representa-
tion of the interface; for example, Jacob’s

ACM Computing Surveys, Vol. 21, No. 1, March 1989

42 l H. R. Hartson and D. Hix

[1985] work has produced a state diagram
specification interpreter. Both RAPID/
USE and the state diagram specification
interpreter are presented in the Appendix.

Apollo Computer’s Domain/Dialogue
(D/D; formerly known as A Dialogue Man-
ager) [Schulert et al. 19851 is again typical
of the UIMS approach in which emphasis
is on mechanisms for handling execution-
time aspects of interfaces. D/D dialogue
is programmed using a compiler and a
run-time dialogue library. The dialogue is
defined around a set of interaction tech-
niques, which form the basis for the inter-
face to the computational code. A set of
interaction techniques is assembled to
define the end-user interface. Given a
particular task set, a variety of end-user
interfaces can be developed to carry out
run-time interactions, including menus,
pointing, forms, and function keys. D/D is
a commercially available product running
on an Apollo workstation, using bit mapped
graphics. Open Dialogue, the successor to
D/D, is described in the Appendix.

Unicad [1985] has developed a UIMS to
ease the task of implementing interactive
computer-aided design (CAD) systems. A
CAD environment requires interactive
graphics support; the Unicad system is built
on a graphics package that provides support
for graphical interaction techniques, partic-
ularly at the lexical level. The Unicad sys-
tem is, however, for use by application
programmers, not dialogue developers.

The Trillium UIMS provides an example
of composability of interface objects; com-
posite objects are hierarchical composi-
tions of dialogue primitives, defined by
LISP code [Henderson 19861. A library
of primitives and composites can be
shared as building blocks for interface
development.

The Graphical User Interface Develop-
ment Environment (GUIDE) [Granor
and Badler 19861 is an interactive graphical
system for designing and generating
graphical end-user interfaces. ‘It provides
flexibility to the system designer while min-
imizing the amount of code the designer
must write. The primary goal of GUIDE is
to provide a simple, interactive way for a
dialogue developer to specify an application

interface. Style of the interface should be
determined by the developer, and the de-
veloper should be able to describe with
GUIDE any interface that could be coded
by hand.

GUIDE provides a great deal of freedom
in representation of the control path and
parameters to action routines. The devel-
oper may refer to application constants,
types, variables, and functions in defining
the interface. This ability greatly reduces
the number of states needed to define the
interface. Actions are provided to perform
application functions, and may have pa-
rameters based on inputs and application
values. Multiple control paths may be rep-
resented by the dialogue developer based
on inputs, application values, and end-user
characteristics. Inclusion of a developer-
defined end-user profile allows the devel-
oper to represent different interfaces
within a single system for different end-
users. Various interaction styles and de-
vices can be used, including menus, forms,
picking, and keyboard. The developer may
choose among any that are suited to a task
and may, in fact, allow the end-user to
choose among several styles or devices to
provide a particular input.

Enter/Act is a product from Precision
Visuals [1987] with a set of high-level
tools to handle all aspects of the human-
computer interface, particularly those
developed on Digital Equipment’s VAX
hardware. Enter/Act emphasizes prototyp-
ing and extensive graphics based on DI-
3000 graphics software. It includes various
practical aids for enhancing developer pro-
ductivity, such as debugging mechanisms
and command macros.

The SmethersBarnes Prototyper [Pro-
totyper 19871 is a commercially available
tool that, despite its name, is more a UIMS
than a prototyper. It can be used to develop
Macintosh-style interfaces, including win-
dows, pull-down menus, radio buttons, and
check boxes. Its interface generally uses
direct manipulation to produce the appli-
cation interface. Application semantics can
be coded in one of several programming
languages and linked to the interface for
execution. Prototyper is detailed in the
Appendix.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 43

4.4 Toolkits and Related Graphics Support

Several systems for interface management.
are built on top of graphics packages such
as the Core system [IEEE Computer
Graphics 19791 or the Graphics Kernel Sys-
tem (GKS) [IEEE Computer Graphics
19841, but “standard” graphics packages
rarely provide enough functionality for
most state-of-the-art interface needs.

A command interpreter (kommandoin-
terpreter-KI) has been developed as the
basis for one such support environment
[Borufka and Pfaff 19811. The KI com-
mands form the linkage between graphical
input and output data and provide the dia-
logue developer with functions for prompt-
ing, echoing, and editing dialogues. At the
heart of the system is GKS, which provides
a set of functions for graphical data pro-
cessing independent of specific graphical
input/output devices, programming lan-
guages, and application systems. It includes
two-dimensional input/output primitives
and a segment facility for subdividing
graphical pictures. Graphical output can be
routed to multiple workstations. On top of
GKS are the KI kernel commands, which
serve two purposes: to allow interactive use
of the GKS functions by providing the end-
user with a common set of commands and
to provide system functions for echoes, er-
ror messages, help screens, and editing. Ex-
tensions to the KI include end-user-defined
command sequences and menus and com-
mands defined by end-users and dialogue
developers.

The ACM/SIGGRAPH/GSPC Core
System is another standardized graphics
package that is being used to support inter-
face management systems. This Core
standard provides a high degree of device
independence. The Abstract Interaction
Handler (AIH) [Kamran and Feldman
19831 has been built on top of the Core
system, with emphasis on various interac-
tion techniques and styles. The uncoupling
of interaction-supporting code from appli-
cation-supporting code is a major feature.
One-level Core “segments” are the basis for
a screen handler. This package of routines
creates a higher level structure of these
segments in order to handle logical screens,

to which all output is written. Binding of
interactions to logical windows is accom-
plished by the screen handler, whereas
binding of interactions to specific devices
is handled by the basic Core system. The
implementation of Functional Language
Articulated Interactive Resources (FLAIR)
[Wong and Reid 19821 (see the Appendix)
required a significant extension of the Core
standard.

GKS is a standard for static grdphical
images. The Programmers Hierarchical
Interactive Graphics Standard (PHIGS)
[Brown 19851 has improved capabilities for
dynamic interaction. PHIGS, however, in-
herited many of the drawbacks of the GKS
input model [Meads 1987; Puk 1986; van
Dam et al. 19871. The number of input
device classes is limited, and there is no
window management. As a result, PHIGS
cannot support many of the new input
techniques.

The graphics systems described above
are general software packages with empha-
sis on graphics power; interface considera-
tions are secondary. Their drawbacks led
to a new class of graphics support toolkits,
oriented more toward problems of interface
development. Many of these systems are
based on window managers. Most window
manager ideas come from Xerox PARC
systems such as Smalltalk and Star. Win-
dow managers allow systems to be designed
so that the end-user can interact with sev-
eral tasks, each in a different “viewport.”
Typically, only one window at a time can
be actively awaiting input, attached to the
keyboard and mouse. Many window man-
agers, however, allow multiple windows to
receive output at the same time. Each win-
dow acts as a separate logical terminal de-
vice with its own input and output services.
End-users can manipulate windows, and
communication among windows is typically
cut and paste using a clipboard concept.
Most window managers are toolkits in the
sense that they contain libraries of window
functions-and possibly other interface
features-that programmers can invoke.

The X Window System [Scheifler and
Gettys 19861, developed at the Massachu-
setts Institute of Technology, supports an
arbitrarily branching hierarchy of resizable,

ACM Computing Surveys, Vol. 21, No. 1, March 1989

44 l H. R. Hartson and D. Hix

overlapping windows upon which human-
computer interfaces can be built. A base
window system provides high-performance,
high-level, device independent graphics to
this hierarchy. This base window system
provides facilities to build applications and
managers for input and windows. X pro-
vides ‘Lwidgets,” which are primitives from
which various interface styles can be con-
structed. This feature makes it attractive
as a support environment for developing
human-computer interfaces. In fact, X is
now one of the most widely used support
environments for both research and com-
mercial products. Its libraries and tools for
facilitating interface development are rap-
idly expanding.

Display PostScript [Perry 19881, by
Adobe Systems, is a graphics support
toolkit that uses a UNIX “troff”-like lan-
guage for describing display pictures and
inputs. It evolved from the PostScript lan-
guage for describing Apple LaserWriter out-
put. Despite X Window’s popularity,
Display PostScript is generally considered
technically superior. Sun Microsystems is
building their Network Extendible Window
System (News), previously called
SunDew, using Display PostScript. Post-
Script programs are downloaded to the
NeWS window manager to improve per-
formance. One of the most common window
managers in the IBM PC world is Micro-
soft’s Windows [Puglia et al. 19861.

4.5 Other Support

4.5.1 Database Management

Outputs of all tools within a UIMS, includ-
ing interface definitions, documentation,
and even program code, must be stored and
retrieved. Massive amounts of secondary
storage are required to store representa-
tions of interfaces and the objects they
contain-screen descriptions, graphics,
text, sequencing relationships, input vali-
dation criteria, and so on (see Section 3).
Most interface definitions are retrieved and
executed or interpreted at prototyping time
and run time.

Early UIMS and other dialogue tools
used file systems provided by host operat-
ing systems. This is convenient for experi-

menting with prototype tools but lacks the
power and flexibility needed for real appli-
cations. High-performance database sys-
tem support is required. Descriptions of
individual interface objects are stored sep-
arately for sharing and reusability. It is a
significant performance challenge to a da-
tabase management system to bring them
back together through relational joins, for
example, which are computationally com-
plex operations.

Some researchers have found that most
commercially available systems either are
too expensive or do not provide the flexi-
bility and performance necessary for this
demanding application and have devoted
considerable effort to developing their own
supporting database management system.
Two examples of interface management
systems that use their own internally de-
veloped relational database systems as sup-
port are RAPID/USE and DMS. It is
interesting to note that both these database
systems, nontrivial development efforts in
themselves, were entirely produced using
the respective software development meth-
odologies. Current object-oriented pro-
gramming systems provide some of their
own internal capability to store and retrieve
large numbers of object definitions. The
state of this technology is, however, still
limited in the size of application system
designs that can be stored.

4.5.2 Object Orientation

Human-computer interface development
tools need the ability to support rapid de-

-sign changes without recompiling or relink-
ing, which can take substantial amounts of
time for large application systems. Because
of their interpretive nature and dynamic
binding capabilities, languages such as
LISP and its variations are popular for
implementing interface development tools.
Object-oriented programming environ-
ments have also attracted the attention of
tool implementers [Fischer 1987; Sibert et
al. 19881, with languages such as FLA-
VORS and LOOPS combining LISP with
object orientation. An object-oriented pro-
gramming environment, such as Smalltalk
[Cox 1986; Goldberg and Robson 19831,
offers the advantage, for tool implementa-

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 45

tion over conventional programming, of a
capability for hiding enough information to
represent objects independently of their
implementation. Because of its event-based
nature, object orientation is effective for
representing asynchronous dialogue and for
representing the behavior of specific inter-
face features (e.g., windows) regardless of
their context. The capability for dynamic
binding, hierarchical definition with inher-
itance of attributes and procedures, and
communication by message passing work
together to support sharability, reusability,
consistency, flexibility, and low code bulk
within interface implementations.

A disadvantage of object orientation is
the tendency to obscure temporal relation-
ships in the high-level sequencing behavior
in the application interface. Because of this
limitation, object orientation has yet to be
proven useful for representing the view of
the dialogue developer or the end-user; it is
possibly better suited for the tool developer
than the tool user. Other disadvantages
include a steep learning curve for program-
ming and a high performance penalty due
to interpreted code, dynamic binding, and
message passing. The current version of the
Dialogue Management System is imple-
mented using Smalltalk; the architecture of
the George Washington University UIMS
is broadly object oriented and is discussed
in detail in the Appendix. Object orienta-
tion is also suitable for supporting proto-
typing tools [Diederich and Milton 19871.
The class concept allows easy implemen-
tation of variations of tools, for example,
by defining tool P to be the same as tool Q
except for certain features.

4.5.3 Workstations

Beyond graphics standards are technologi-
cal advances that have produced powerful
graphics workstations useful for supporting
interface management. These workstations
are typically stand-alone micro- or mini-
computers with their own substantial
operating systems and most graphics
functions implemented in high-perform-
ance hardware. Several interface devel-
opment tools have been implemented
on graphics workstations-for example,
RAPID/USE on a SUN, RIPL on a

MicroVAX, Domain/Dialogue and Open
Dialogue on an Apollo, DMS on a Sil-
icon Graphics IRIS, and a state transi-
tion diagram interpreter on a Symbolics
machine.

5. RAPID PROTOTYPING

Present methods for developing and eval-
uating human-computer interfaces are
more analytic than synthetic in nature.
That is, something must first be built, then
analyzed, then iteratively refined. The
present state of human factors does not
allow synthesizing a human-computer in-
terface and “getting it right” the first time,
and this is unlikely to change soon. In
comparison with software design, which is
often correctness driven, interface design
must be a self-correcting process. As Car-
roll and Rosson [1985] point out; design
activity is essentially empirical “not be-
cause we don’t know enough yet, but
because in a design domain we can never
know enough.” The process of iterative re-
finement involves two important roles: One
is related to computer science, the other
to behavioral science. The latter role is
responsible for dialogue principles and
human factors, which are not in the scope
of this survey. The computer science role,
however, is to provide human factorability
of interfaces, which is at the heart of this
article.

5.1 Motivation for Rapid Prototyping

Building systems is expensive and time
consuming. The alternative is to build pro-
totypes rather than complete systems.
Human factorability calls for dialogue
development tools that will rapidly produce
prototypes to allow early observation of
interface behavior and that will allow easy
modification of designs. Thus, rapid pro-
totyping is a major concept of human-
computer interface management. Rapid
prototyping of interfaces is also sometimes
called dialogue simulation, and prototypes
are sometimes called scenarios or executa-
ble specifications. Prototypes can also be
written just as programs.

Prototyping is an approach to system
development that involves production of at

ACM Computing Surveys, Vol. 21, No. 1, March 1989

46 . H. R. Hartson and D. Hix

least one early version of the application
system, demonstrating essential features of
the later operational system. With rapid
prototyping the process is accelerated so
that many alternatives can be evaluated
and the effects of each modification can be
promptly observed. Rapid prototyping
brings together both interface representa-
tion and execution, often under the aegis of
a UIMS. Rapid prototyping is, though, pri-
marily a technique, not a tool. Valuable
insight can be derived from use of paper
and pencil interface prototypes early in the
interface development process. Key ingre-
dients of a rapid prototyping approach in-
clude an early ability to observe end-user
and system behavior, use of scenarios, end-
user participation, and an evaluation ori-
entation to development. The iterative
nature of human-computer interface devel-
opment imposes changes in the traditional
linear development life cycle [Hartson and
Hix 19891. A prototype reduces the chances
of surprises to the end-user, helps solve the
problem of the end-user’s inability to give
complete specifications to system design-
ers, and “gives the end-user a more imme-
diate sense of the proposed system”
[Wasserman and Shewmake 19821. It
reveals misunderstandings that arise be-
tween developers and end-users because
of their different backgrounds and experi-
ence [Gomaa and Scott 19811.

Whereas testing, verification, and vali-
dation are intended to indicate whether a
design meets a requirements specification,
prototyping can show up errors in the re-
quirements. These errors in requirements
are difficult to detect and even more diffi-
cult to correct [Boehm et al. 19841. The
goal is fast communication of interface de-
sign alternatives to developers, end-users,
and implementers. Rapid prototyping al-
lows the process of iterative refinement to
occur earlier in the design process. For
more than 15 years, the literature has called
for involving the end-user in system design;
rapid prototyping provides a way, for the
first time, to do this effectively and effi-
ciently. The emphasis on this approach to
system design is evidenced by the appear-
ance of several surveys and workshops

[Carey and Mason 1983; Freeman 1980;
Zelkowitz 19821 (Cochran, private com-
munication, 1984).

At first, especially among developers,
there was some question as to whether a
working prototype was necessary. Why
couldn’t anyone follow the requirements
and design documentation, especially the
procedural parts, and see for themselves
what the target application system was
like? Wasserman and Shewmake [1985]
respond very well: “While some customers
are willing to buy some cars simply from a
brochure containing technical specifica-
tions and photographs, most customers
prefer the opportunity to take a test drive,
even if the car that they test is not identical
to the one that they will purchase.”

Alavi [1984] compared prototyping with
the traditional life cycle approach to soft-
ware development on twelve information
projects in six different organizations. The
study concluded that prototyping, espe-
cially in the face of unclear or ambiguous
end-user requirements or where there is a
need for experimentation (which is true,
of course, for most systems with human-
computer interfaces), was effective as an
approach to interactive system develop-
ment. In particular, results showed that
end-users of systems developed using a pro-
totype were more favorable toward the final
system than were end-users of nonproto-
typed systems. Prototyping also facilitated
communication between end-user and de-
veloper, but it did cause some difficulty
with managing the design process.

In another multiproject experiment in-
volving seven software teams, Boehm et al.
[19841 reported that prototyping, compared
to complete a priori specification as a
development approach, produced software
with equivalent performance but with
about 40 percent less code and 45 percent
less effort. Although the prototyped soft-
ware rated lower on functionality and
robustness, it was judged easier to learn
and use. These conclusions indicate that
human-computer interface concerns are
supported by prototyping as a system
development approach. The areas that suf-
fered represented software concerns more

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 47

than dialogue concerns, a fact that indi-
cates the need for a software development
methodology that integrates prototyping,
especially interface prototyping, as part of
the whole system development life cycle.
The next section, on Methodologies for In-
teractive System Development, discusses
methodological issues that address this
problem. Hartson and Smith [1988] give
more discussion of advantages and disad-
vantages of prototyping in the development
process.

The idea behind interface prototyping is
not new; it can be thought of as an exten-
sion of software simulation, with emphasis
on the human-computer interface. The ex-
perimental work on a help facility in the
Interactive Chart Facility [Clark 19811 is
an example of an early approach making
this transition from software to interface
simulation. Even before software simula-
tion, the same ideas were used (for the same
basic reasons) in the early prototyping of
hardware logic designs [Hartson 1969;
Hays 1969; Linebarger and Brennan 19641.

5.2 Kinds of Prototypes

Approaches to prototyping can be classified
along at least three (more or less orthogo-
nal) dimensions: revolutionary versus evo-
lutionary, interface only versus whole
system, and intermittent versus continuous
[Hartson and Smith 19881. A “revolution-
ary” development process is one in which a
prototype is designed, built, evaluated, and
scrapped before work begins anew on the
real system. A revolutionary prototype is
most useful when built as early as possible,
without a large commitment of resources.
In an “evolutionary” development process,
a prototype evolves through iterative mod-
ification into a complete implementation of
the target application system. The evolu-
tionary approach avoids wasted effort and
the difficult question of when to discard the
prototype and start working on the real
system.

“Interface only” prototypes are very com-
mon; a mock-up facade is fairly easy to
construct and execute. Dan Bricklin’s
Demo Program [19871 and Skylights [19871
are among the increasing number of prod-

ucts currently available that use a “slide-
show” concept to build and view sequences
of screens (scenarios), including automatic
pacing and end-user-directed branching.
Such tools, however, rarely have a dialogue
model or predesigned dialogue constructs
(e.g., menus or forms) and often accept only
alphanumeric keyboard input. In some
cases these products have been augmented
with ways to connect calls to semantic
(computational) routines, and some have
added code generators. FLAIR [Wong and
Reid 19821 and GIDS [Overmyer and
Campbell 19841 are examples of prototyp-
ing systems that build detailed, complex
graphical mockups yet are still interface
only. “Whole system” prototypes, however,
have advantages. As computational func-
tions are developed, it is desirable to see
them in action in the prototype. A disad-
vantage is that whole system prototypes
are difficult to build; their execution envi-
ronment requires much more technically
complicated support.

Prototypes for which the ability to dem-
onstrate system behavior is “intermittent”
can be exercised only at times in the devel-
opment process when a particular version
of the system has been completely con-
structed. A coded implementation of a
prototype (slow prototyping) is an inter-
mittent type. There are long intervals be-
tween complete versions where the code
cannot be compiled and run. This approach
is not responsive to the needs of iterative
development. Prototypes that can be exer-
cised on a more or less “continuous” basis
are more desirable for interface develop-
ment and do not depend on complete de-
velopment of a specific version of the
system. Prototyping of incomplete designs,
however, poses challenging problems in the
support environment, primarily because
software is fragile. The slightest error or
missing piece can prevent it from running.
Even stubbed systems must be syntacti-
cally complete and correct. The nature of
prototypes, especially early ones, is to be
incomplete, ambiguous, tentative, and error
prone. The support environment must keep
a prototype running despite these initial
defects.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

48 l H. R. Hartson and D. Hix

5.3 Approaches to Rapid Prototyping

Because rapid prototyping usually requires
interpretation of interface representations,
approaches to rapid prototyping are related
to the corresponding approaches to inter-
face representation, discussed earlier in
Section 3. In particular, there are prototyp-
ing approaches for interfaces represented
by state transition diagrams, BNF-style
grammars, and event-based mechanisms.
Most of the sequential prototypers (i.e.,
those based on BNF or state diagrams) are
similar conceptually, the differences being
mostly in ease of use of the representation
scheme. Since time sequencing is an impor-
tant aspect of sequential dialogue proto-
tming, the state transition diagram
representation (which graphically shows
sequential relationships) may be preferred
by nonprogrammers. For event-based dia-
logue, HyperCard (discussed at the end of
this section) represents another kind of
approach.

5.3.1 State Transition Diagram-Based
Prototyping

Both Jacob and Wasserman have devel-
oped similar rapid prototyping systems,
which, like their interface representation
schemes, are based on state transition dia-
grams. Both systems are discussed in the
Appendix. Wasserman and Shewmake’s
[1982, 19851 RApid Prototypes of Interac-
tive Dialogues (RAPID/USE) is a part of
their broader User Software Engineering
(USE) methodology to support construc-
tion of prototypes and interactive infor-
mation systems. For prototyping, local
storage variables are added to store state
information and to communicate with the
semantic part. Since semantic actions are
associated with each arc, an entire inter-
active information system could be imple-
mented using the RAPID/USE interpreted
approach to state transition diagrams, by
invoking programmed semantic routines
when needed during the dialogue sequence.
By adding this functionality to the proto-
typing process, RAPID/USE can provide
realistic dialogues more closely associated
with the appropriate semantic action
instead of fixed, predetermined stub
messages.

A Transition Diagram Interpreter (TDI)
executes the coded representations and
simulates the interface. Because the TDI
interprets the coded representations, re-
compiling is not necessary when changes
are made. During the use of RAPID, logs
are maintained for metering raw inputs,
allowing analysis of keystroke-level events
and playback of scenarios. Time-stamped
transition-level events are also logged for
analysis. A commercially available version
of RAPID/USE is now marketed by Inter-
active Development Environments, Inc.

Jacob’s [19831 use of state transition dia-
grams is similar. As in RAPID/USE, state
transition diagrams are converted to a cor-
responding text form (a state transition
textual language) much like a high-level
programming language. This textual form
is executable, providing rapid prototyping
of the interface.

A third system based on a representa-
tion technique similar to state diagrams is
the Dialogue Management System (DMS)
[Hartson et al. 19841 in which rapid pro-
totyping is done by a subsystem called the
Behavioral Demonstrator. All parts of the
dialogue are produced using the Author’s
Interactive Dialogue Environment (de-
scribed in Section 4.3), with the declarative
representations stored in a database and
interpreted for prototyping. Graphical rep-
resentation of the global control struc-
ture-which in DMS is separate from the
dialogue but controls sequencing between
dialogue and computation-is directly in-
terpreted, without an intermediate textual
language. The two representations, to-
gether with their respective tools, allow
refinement of logical sequencing, dialogue
form and content, and interaction styles
during prototyping. The Behavioral Dem-
onstrator demonstrates those parts of the
system that are implemented and uses dia-
logue developer-provided samples of values
for data of those parts that are not yet
implemented. The Behavioral Demonstra-
tor provides a life support system for par-
tially completed designs, which is able to
execute as much of the dialogue (and whole
system) as is completed at a given time. As
they become available, actual application
dialogue and computational functions be-
come part of what is demonstrated. The

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 49

final system gracefully evolves without the
added effort of throwaway prototype code.
An experimental version of the Behavioral
Demonstrator has had limited, but success-
ful, use.

Mason and Carey [1983] have analyzed
ACT/l, once a commercially available
product for rapid prototyping of end-user
interface scenarios. Sequential dialogue in
this screen-oriented system is created “by
example” through filling in parts of a
screen. The logical sequencing mechanism
is basically the same as in state transition
diagrams, but the representation is in
tabular form, showing procedural links.
Control flow is represented by textually
noting the relationship between end-user
inputs and successor routines and screens.
ACT/l uses an “architecture-based” meth-
odology, with which the system designer,
much like a building architect, develops the
external appearance of the system and
works inward to develop the system design.
An application is seen as a series of (input
screen, process, output screen) sequences,
and linkages or control among these
screens. Screen scenarios are used as the
communication mechanism between the
application end-user and the system devel-
oper. The end-user can follow a fixed script
through screens without any application
logic having been developed. Logic flow def-
inition is by example through the screens,
indicating the successor screen for each
possible end-user input.

Suggestions made by the end-user while
exercising the ACT/l scenarios are incor-
porated during successive iterative refine-
ment processes. A demonstration phase
with partially implemented application
logic evolves finally into a first prototype
of the target application system. Dialogue
screens developed in the specification stage
are directly usable in this production ver-
sion. ACT/l has had more than 100
end-users and has been widely applied and
evaluated in the development of interactive
information systems [Mason and Carey
19811.

TRW’s FLAIR system [Wong and Reid
19821 is similar to ACT/l in that it directs
a dialogue developer through sequences of
menu screens to translate a scenario into a
form that can be executed or simulated.

FLAIR was one of the first to use a lan-
guage, called a Dialogue Design Language
(DDL), as a dialogue representation instead
of a formal language grammar. FLAIR’s
voice menu-driven DDL allows system
designers to construct highly graphical
human-computer interfaces and allows the
end-user to interact with a prototype of the
final system through scenario simulation,
facilitating experimentation with various
interfaces. FLAIR can create, store, and
retrieve static frames, as well as allow the
end-user to define and control a hierarchy
of menus. FLAIR and another rapid pro-
totyper called the Rapid Intelligent Proto-
typing Language (RIPL) are presented in
the Appendix.

5.3.2 BNF-Based Prototyping

Very similar to the state transition dia-
gram-based approaches for prototyping are
those based on BNF-like grammatical in-
terface representations, although there are
fewer of these. The grammars are inter-
preted with mechanisms that are basically
finite state machines. The different type of
representation carries with it a slight dif-
ference in emphasis, treating the interface
in a more language-oriented way with a less
direct emphasis on control structure and
sequencing.

The Interactive Dialogue Synthesizer
(IDS) developed by Hanau and Lenorovitz
[Hanau and Lenorovitz 1980a, 1980b; Len-
orovitz and Ramsey 19771 is an example of
a set of tools to create simulations of end-
users’ interactive dialogues for which dia-
logue is defined using a BNF grammar.
Displays are defined as machine-indepen-
dent semantic actions, the meanings of
which are defined in terms of an abstract
machine, attached to rules of the grammar.
Language processors are automatically
generated from the grammar and used to
execute interface representations as a sim-
ulation. Initial conceptual “snapshots” of
scenarios are predrawn and, along with
dynamically constructed displays, are used
to simulate the external appearance of the
desired application system. Real-time dis-
play updates are simulated with timed se-
quences of static displays. IDS has been
successfully applied to a number of diverse

ACM Computing Surveys, Vol. 21, No. 1, March 1989

50 l H. R. Hartson and D. Hix

real-world application areas, mostly com- human-computer interface in Section 3; in
mand and control systems. this section we will focus on the procedural,

life cycle aspects and, in particular, on

5.3.3 Event-Based Prototyping
connections of human-computer interface
development to the development process

An example of prototyping using an event- for the rest of a target application system.
based mechanism, more suitable for Although technical matters abound, the
prototyping asynchronous, multi-thread subject of development life cycles is also a
dialogue, is found in the use of Apple management issue [Mantei 19861.
Macintosh’s HyperCard [Goodman 19871 The need to view human-computer in-
as a prototyper. In HyperCard, a “card” is
a screen of text and graphics objects, and
cards are grouped into “stacks.” A dialogue
developer can define “hot spots” associated
with objects on the screen, making such
objects selectable in response to end-user
actions such as mouse button clicking. The
dialogue developer also defines a response
to each event; for example, a mouse click
action on an arrow object can be made to
cause execution to move ahead to the next
card in the current stack. Using Hyper-
Card, the dialogue developer can create a
template-like background for a particular
style of card to be used throughout a stack.
To this background are then added fore-
ground objects specific to each individual
card. For example, a name, address, and
phone number background card could be
created and then numerous individual
cards with specific instances of name, ad-
dress, and phone number overlaid on the
background. A library of icons (symbols),
many even with semantics (response to
end-user actions) attached, greatly facili-
tates interface development. Use of the
HyperTalk programming language to cre-
ate program “scripts” allows linkage among
cards and serves as a general means for
providing semantics where necessary.
HyperCard has been called programming
for nonprogrammers, and, as such, is a suit-
able system for use by dialogue developers.

terface management as an integral part of
the software engineering process is being
recognized [Draper and Norman 1985;
Hartson and Hix 1989; Hartson et al. 19841.
Interfaces cannot be developed as “add-on”
parts of an interactive system, with their
development carried out in isolation from
development of the rest of the application
system. Thus, an important concept in
human-computer interface management is
a methodology for interactive system devel-
opment. In particular, a holistic approach
to development provides a comprehensive
methodology for software design, empha-
sizing interface development as an integral
and equal part of the process. Procedures
and notations are provided specifically for
representing and designing the dialogue.
The definition of “system” is enlarged to
consider both humans and computers as
components.

Also, an approach to interface develop-
ment integrated with software engineering
must support some form of prototyping.
One of Boehm’s [1983] seven basic princi-
ples of software engineering is to perform
continuous evaluation. Prototyping is an
effective way to begin evaluation and test-
ing, traditionally relegated to the end of the
life cycle, as early as the requirements spec-
ification phase. But prototyping can intro-
duce serious management problems unless
the process and its impact on the life
cycle are well understood [Hartson and
Smith 19881.

Development of a large software system
is a complex task even without considering

6. METHODOLOGIES FOR INTERACTIVE
SYSTEM DEVELOPMENT

A methodology for system development the necessity for an effective end-user
consists of a set of procedures that indicate interface. Many current software develop-
a step-by-step development process over a ment methodologies are aimed at reducing
life cycle and a notational scheme that is this complexity for the application
the means for documenting designs that programmer by providing tools and guide-
evolve during that life cycle.’ We discussed lines for software analysis, design, im-
notational representation schemes for the plementation, and maintenance. Recent

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 51

methodological advances have begun to
emphasize the role of a human factors ex-
pert in the traditional system development
life cycle by including-parallel to those
in place for software development-new
guidelines, methods, and tools to produce
quality interfaces.

It is true that addition of a dialogue de-
veloper to the overall system design team
increases the need for communication in
an already sizable group, which can include
systems programmer, application program-
mer, systems analyst, application expert,
end-user, and human factors engineer. A
holistic system development methodology,
led by a role sometimes called a systems
engineer, however, embodies the activities
and principles of both software engineering
and human factors engineering, providing
appropriate development and communica-
tion tools for each.

Human-computer interface manage-
ment is a logical extension of current work
in software engineering and automated
development environments. Numerous
methodologies fully or partially cover the
software life cycle activities with varying
levels of automation. Most of these meth-
odologies use a top-down development
strategy. A questionnaire-based evaluation
of 24 methodologies is presented by Por-
cella et al. [1983]. Among these, the Jack-
son [1975, 19831 and Warnier-Orr [Hosier
19781 methodologies use data as the basis
of design, and both derive the program
structure from data structures. These, how-
ever, do not help a dialogue developer who
is concerned with the human being’s role
during the operation of a system. The
Structured Analysis and Design Technique
(SADT) [Ross and Schoman 19771, Struc-
tured System Analysis (SSA) [Weinberg
19801, and Structured Design [Myers 1975,
1978; Stevens 1981; Stevens et al. 1974;
Weinberg 1980; Yourdon and Constantine
19791 use the notion of a “process” as the
basis of design and build the design around
functions of the final system but still do
not emphasize management of interface
development.

Automated support tools and environ-
ments for programming already exist, and
interest in them is increasing, especially
within larger programming language and

methodology efforts such as Ada and the
associated Software Technology for Adapt-
able, Reliable Systems (STARS) program
[IEEE Computer 19831. As already noted,
however, most automated tools associated
with these methodologies support the de-
veloper in the coding phase of software
production, not the design phase, and they
generally lack tools to facilitate construc-
tion of human-computer interfaces. On the
other hand, interactive tools specifically for
producing interfaces, such as those pre-
sented in Section 4, often exist, but without
being integrated into a methodological
approach to whole system design.

We found only two software methodol-
ogies, the USE methodology and the DMS
methodology, that explicitly support dia-
logue development as an integral part of
the software development process. Both
USE and DMS, described in the Appendix,
provide interactive tools to support their
respective methodologies.

The USE methodology features a life
cycle of several phases [Wasserman et al.
19861. Those phases that lead to creation
of the human-computer interface begin
with an initial analysis phase for describing
activity, data, and end-user characteristics.
Next is the external design of end-user
interfaces, using an “outside-in” approach,
working from end-user characteristics to-
ward how the end-user will request system
functions and how the system will display
outputs. Then an executable prototype of
the interface is created and the process is
iterated until end-user and developer agree
on the results. The RAPID/USE method-
ology has been used successfully on a large
number of both experimental and commer-
cial system development projects.

The methodology of the Dialogue Man-
agement System [Hartson and Hix 19891
also treats the human-computer interface
as an integral, but clearly delineated, part
of an application system. Traditional sys-
tem development life cycles are primarily
sequential, reflecting a “waterfall” process
of moving from one distinct phase to an-
other. Integration of interface management
into the process can have a significant
effect on this life cycle paradigm. Rapid
prototyping assumes an important role.
Also, evaluation of designs and feedback of

ACM Computing Surveys, Vol. 21, No. 1, March 1989

52 l H. R. Hartson and D. Hix

conceptual design/
formal design rep’n

t

Figure 19. Star life cycle for human-computer interface development (from Hartson and
Hi% [1989]).

usability testing into redesign promote an
iterative refinement approach that implies
a truly cyclic process.

Based on qualitative empirical observa-
tions of dialogue developers producing
different kinds of human-computer inter-
faces, Hartson and Hix [1989] concluded
that human-computer interface develop-
ment most naturally occurs in “alternating
waves” of two kinds of complementary ac-
tivities. Typical activities that are bottom-
up, synthetic, empirical, and related to the
end-user’s view alternate with activities
that are top-down, analytic, structuring,
and related to a system view. These results
suggest a “star” life cycle for human-
computer interface development, as shown
in Figure 19. This star life cycle, with eval-
uation at its center, supports iterative re-
finement and rapid prototyping. Because of
its high interconnectivity, it allows almost
any ordering of development activities and
promotes rapid alternation among them.

7. CONTROL STRUCTURES FOR HUMAN-
COMPUTER INTERFACE MANAGEMENT

Simply stated, control is the governing of
logical sequencing within an interactive
software system. Control flow, along with
data flow, has always been a major concern
in the software engineering of an interac-
tive system. With the advent of special
emphasis on the human-computer inter-

ACM Computing Surveys, Vol. 21, No. 1, March 1989

face and its separation from noninterface
parts of the system, new software architec-
tures for application systems arose and the
placement of control within those architec-
tures became a research question. The role
and placement of control in the architec-
ture of a UIMS has become a correspond-
ingly interesting question. Control structures
are used to accomplish the sequencing and
synchronization of events during execution
of an interactive application system. The
control structure of an application system
can influence the way in which the sys-
tem is designed, represented, implemented,
and prototyped and is thus an important
concept in human-computer interface
management.

Control mechanisms within a target ap-
plication system can be classified as either
local or global. Local control is the control
within dialogue or within computation.
Dialogue control is local control for se-
quencing of dialogue operations such as
display of prompts, acceptance of an input,
validation, mapping, and resolving input
errors with the end-user. Computational
control is local control (e.g., for looping)
used within algorithms of the functional
semantic routines. Global control is the con-
trol that governs sequencing among dia-
logue and computational components.

Corresponding to the two basic types of
dialogue discussed in the Introduction,
there are the same two basic kinds of

Human-Computer Interface Development 9 53

Figure 20. Control structure in a problem/solution
model.

dialogue control-sequential and asyn-
chronous. Historically, much attention has
been given to control structures for sequen-
tial dialogue, but recently emphasis on asyn-
chronous control structures has emerged.

7.1 Sequential Dialogue Control

At the highest level in the traditional top-
down system development process, the
problem and the solution requirements
must be stated. Whenever the first “proce-
dural” statement of system functions ap-
pears, it is often a graph-structured model
indicating only the highest level of sequenc-
ing within the problem solution. At this
level, very little may be known about the
dialogue content or the algorithmic details
of the computation that will eventually be
desired. The graph structure of Figure 20
abstractly represents (without reference to
a particular notation) the high-level control
flow (sequencing) in the problem/solution
model for some application. Each node of
this graph could typically represent large
amounts of both dialogue and computation.

As further development takes place,
more becomes known about the functional
nature of the computation performed by
the computational parts and the interac-
tion performed by the dialogue parts. These
parts now become separated in the repre-
sentation and require a means for sequenc-
ing them in the logical flow of the
application system.

Two models of sequential control are de-
scribed in some of the early UIMS litera-

ture [Rosenthal and Yen 19831: internal
control and external control. With internal
control, the control structure of the prob-
lem/solution model is contained internally
to the computational part, which invokes
separately defined dialogue functions when
input and output are required. External
control is external to the computational
part and is therefore, presumably, in the
dialogue part. The computational part is
divided into various functions that are in-
voked by the dialogue part, which dictates
the overall sequencing. Since the terms “in-
ternal” and “external” are used with respect
to the computational part, it is clear that
the perspective of this work was from the
computational viewpoint and not from that
of the end-user. We will use the terms
“computation dominant” control to refer to
internal control and “dialogue dominant”
control for external control.

7.1.1 Computation Dominant Control

Computation dominant control, also re-
ferred to as “embedded control” [Kamran
and Feldman 19831, is illustrated in Figure
21. Application systems using prepackaged
graphics software, but not UIMS, typically
employ computation dominant control
[Kamran and Feldman 19831. A “slave
UIMS” (not a typical UIMS) is a UIMS
that conducts dialogue under direction of
the computational part [Rosenthal and Yen
19831. Computation dominant control pro-
vides a system structure that can be effi-
cient in execution but lacks the flexibility
necessary for easy modification of overall
system sequencing. Also, because of the
need to associate this overall system se-
quencing with the dialogue, this kind of
system structure is awkward for early
interface prototyping.

7.1.2 Dialogue Dominant Control

With dialogue dominant control, illustrated
in Figure 22, control resides in the dialogue
component. Sequencing is dependent on
end-user inputs. Many UIMS produce ap-
plication systems that are more or less
based on a dialogue dominant model
of control. Most approaches to dialogue
design representation based on state

ACM Computing Surveys, Vol. 21, No. 1, March 1989

54 l H. R. Hartson and D. Hix

Dialogue
Functions

Figure 21. Computation dominant control.

Computation
Functions

Figure 22. Dialogue dominant control.

transition diagrams or BNF use, explicitly
or implicitly, the dialogue dominant control
structure. The AIH, an early UIMS devel-
oped at George Washington University
[Kamran and Feldman 19831, is represent-
ative. The AIH Interaction Language In-
terpreter interprets interface specifications
and guides logical sequencing of interaction
tasks. When computation is required, the
Interaction Language Interpreter activates
semantic routines and passes them the in-
put values it has acquired from the end-
user. Other examples of approaches and
UIMS-many of which are presented in
the Appendix-that produce application
systems with dialogue dominant control in-
clude IDS, FLAIR, ACT/l, RAPID/USE,
and Jacob’s State Transition Diagrams.

In the dialogue dominant configuration,
dialogue of the application system is in
charge of system execution, accepting
inputs and invoking the computational
component when semantic processing is

needed. The computational part becomes a
set of attached semantic functions.

Despite their popularity, however, dia-
logue dominant control structures have
drawbacks. Perhaps the most serious short-
coming relates to abstraction, a process
used to control complexity in a design rep-
resentation by hiding details inappropriate
to a given level. Dialogue dominant control
can result in increased complexity due to
its tendency to mix levels of abstraction.
Lexical and syntactic details and local dia-
logue control are often represented at the
same level with global control and invoca-
tion of functional semantics. This is espe-
cially evident in state transition diagrams
where detailed functions such as token level
(syntactic) error processing and help re-
quest handling are often found at the same
level of abstraction as global transitions
among dialogue and computational states.
This mixture of abstraction levels also un-
necessarily violates dialogue independence.
Because global control is mixed with dia-
logue, the separation of developer roles is
blurred. Global control design is now the
responsibility of the dialogue developer.

On the positive side, dialogue dominant
control is well suited for rapid prototyping
because it tends to provide a behavioral
model of the entire system. By placing
global control in the dialogue, this model of
control easily provides a dialogue-oriented
simulation of the behavior of an application
system, even when much of the semantics
is stubbed. For small applications these
prototypes can evolve into a functional im-
plementation. The architecture, however,
is still basically that of a dialogue-oriented
simulator, and its execution “requires in-
creased (possibly substantial) computer
systems resources” [Mason and Carey
19831. Because the dialogue must deal with
control flow for the whole target applica-
tion system, dialogue dominant control
does not, in general, offer a good top-
down production-style system architecture
[Gomaa and Scott 19811.

7.1.3 Mixed Control

Localization of control enforced by the
computation dominant or dialogue

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 55

Figure 23. Mixed control.

dominant model is not always desirable.
In a mixed control structure, shown in
Figure 23, computational modules can ini-
tiate subdialogue to return intermediate re-
sults, handle errors, provide end-user
feedback, and request additional informa-
tion [Hayes et al. 19851. Mixed control
allows invocation of dialogue from the com-
putational side and vice versa. This offers
more flexibility but requires more discipline
to maintain dialogue independence. The
application programmer must subcontract
dialogue design to the dialogue developer.
Mixed control also means significant addi-
tional requirements are imposed on the
interface definition-particularly for inter-
nal dialogue-within the UIMS [Hayes
et al. 19851 to represent the additional
complexity.

7.1.4 Balanced Control

Another separation, that of global control
from both dialogue and computation, is also
possible, yielding the control structure
shown in Figure 24. Here, global control is
at the top of a symmetrical, hierarchical
structure. Early versions of DMS at Vir-
ginia Tech were based on this balanced
model of control, requiring an application
system to be divided into three independ-
ent, but communicating, components: dia-
logue, computation, and global control
[Hartson et al. 19841. (This was also shown
in Figure 9.) The global control component
governs sequencing among invocations of
dialogue and computational functions.

\ Control

Dialogue Functions j Computation Functions

Figure 24. Balanced control.

7.2 Asynchronous Dialogue Control

Event-based mechanisms are currently the
primary underlying control and communi-
cation techniques upon which asynchron-
ous dialogue is constructed. End-user
actions are sensed by device hardware and
firmware (and possibly graphics software)
and communicated to interface software as
“events.” An example of this kind of event
is passing of the mouse cursor over an
interface icon. The need for corresponding
system action(s) is communicated by the
interface. The system can still be divided
into components. Communication among
components is typically by message pass-
ing, and the mechanism becomes quite gen-
eral by viewing each message within the
system as an event.

For asynchronous control, especially for
direct manipulation dialogue, there can be
difficult trade-offs in making the separa-
tion into components. The direct manipu-
lation interaction style brings the end-user
cognitively closer to application semantics.
To support this, the semantics must be
brought closer to the end-user interface,
something that tends to work against sep-
aration of the components. There are two
ways the application semantics can be
brought closer to the dialogue component:
Build more semantic processing power into
the dialogue component (especially the in-
put part) or establish close communication
between the dialogue component and the
computational semantics [Hartson 19891.
The trade-off between these two ap-
proaches is essentially one that weighs a

ACM Computing Surveys, Vol. 21, No. 1, March 1989

56 . H. R. Hartson and D. Hix

input 0 dialogue

Each end-user action
can change application
objects as represented

internally

Internal
representation of

application objects
in data structure

display
devices

Figure 25. Communication among run-time components.

clean functional separation of components
against the overhead of communication
among them.

As an example of the need for semantics
in the end-user interface, consider the drag-
ging of a Macintosh file icon toward the
trash can icon for deletion. If the file icon
passes over a folder icon, the folder icon is
highlighted to remind the end-user that
there is a semantic relationship between
files and folders. If the end-user releases
the mouse button at that point, the file is
deposited in the folder. If echoing of input
actions is to be accomplished within the
dialogue component, the dialogue must
have semantic information about the rela-
tionship with the folder icon so that the
icon can be highlighted as necessary. The
alternative is for the dialogue component
to communicate information about lower
level input events to the computational
component, which decides to highlight an
object but must communicate back to the
dialogue component to have the highlight-
ing done.

Figure 25 shows a typical configuration
for run-time control and communication
among components. Here the dialogue com-
ponent is subdivided into input dialogue
and output dialogue. The input dialogue
component is aware of all end-user inter-

face and application objects and is sensitive
to any events affecting objects as a result
of an end-user action. The difference be-
tween sequential and asynchronous dia-
logue control lies primarily in whether the
overall synchronizing control-which when
added to the asynchronous control makes
it sequential-is explicit (for sequential) or
implicit (for asynchronous). Even implicit
control must be real at run time. Sequential
control requires the top level of control
logic to be expressed explicitly by the
dialogue developer. A similar top layer of
control logic is required to provide
synchronism even for the asynchronous
case. The asynchronous control mechanism
works because the input events get sent to
and handled by the proper objects, and
control is yielded to those objects for pro-
cessing. The dialogue developer is thus af-
forded great freedom to isolate the behavior
of individual objects and actions within
complex direct manipulation, multi-thread
dialogue without concern for the compli-
cated network of control details in the high-
level part of the structure.

The strong linkage between input dia-
logue for language parsing and graphical
output dialogue necessary for responsive
semantic feedback is discussed by Olsen et
al. [1985] in the context of the GRINS

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development 9 57

UIMS. Dialogue control in GRINS is based
on interactive pushdown automata, which
are generated from input descriptions and
interpreted at run time. A layout editor
is used to merge presentation information
for output display under control of the
automata.

Programs running on the Macintosh are
not entirely asynchronous because of their
strong synchronous relationship to a main
control loop, which is explicitly imposed on
the programmer [Apple Computer 19851.
The most significant consequence is the
fact that, once a program is in control,
control is absolute in the sense that no
event (even outside the current window)
can arbitrarily cause control to go else-
where. It is the programmer’s responsibility
to respond to any event and voluntarily
give control back to the main loop.

Mac App [Schmucker 19861 provides a
high-level control structure in the form of
an “application shell” for Macintosh pro-
grammers. The programmer writes routines
to handle each standard type of event, and
Mac App offers the control framework in
which to imbed these routines. Mac App
also has its own library of routines for
scrolling, selecting, and launching from
“empty” windows, pulldown menus, dia-
logue boxes, and desk accessories based on
well-defined Macintosh interface stand-
ards. The programmer can fill in the con-
tents, customize them to a specific
application, and make connections to com-
putational routines via an extendible set of
standard interobject messages.

The Switchboard model of concurrent
input synchronization [Tanner et al. 19861
is a good example of dialogue control spe-
cifically intended for concurrency. The
Switchboard is used to route input from the
multidevice stream to associated dialogue
managers to handle various threads. Based
on Harmony, a multitasking operating
system with efficient message passing,
Switchboard offers an approach that could
implement the run-time components of
Figure 25 as concurrent processes. Switch-
board serves as the control and communi-
cation center, connecting input messages
from “couriers” to computational tasks.

8. SUMMARY AND THE FUTURE OF
INTERFACE MANAGEMENT

Human-computer interface management,
from a computer science viewpoint, focuses
on the process of developing quality hu-
man-computer interfaces, including their
representation, design, implementation,
execution, evaluation, and maintenance.
Important concepts of human-computer
interface management have been presented
in this survey, providing a framework for
classifying and comparing approaches to
human-computer interface management.
Dialogue independence is a characteristic
that separates design of the interface from
design of the computational component of
an application system so that modifications
in either tend not to cause changes in the
other. Such independence allows easy mod-
ification of dialogues to meet the changing
needs of end-users. The role of a dialogue
developer, whose main purpose is to create
interfaces that incorporate human-com-
puter interface guidelines, is a direct result
of the dialogue independence concept.
Structural models of the human-computer
interface serve as frameworks for under-
standing the elements of human-computer
interfaces and for guiding the dialogue de-
veloper in their construction. Representa-
tion of the human-computer interface is
accomplished by a variety of notational
schemes for describing the interface. Nu-
merous kinds of interactive tools for hu-
man-computer interface development free
the dialogue developer from much of the
tedium of “coding” dialogues and facilitate
concentration on incorporating human fac-
tors into interfaces. The early ability to
observe behavior of the interface-and in-
deed of the whole application system-pro-
vided by rapid prototyping, increases
communication among system designers,
implementers, evaluators, and end-users.
This increased communication results in
improved human-computer interfaces. A
system created by a dialogue developer and
an application programmer working in par-
allel must be developed by using an ap-
proach that gives equal emphasis to both
dialogue and computational components of
the software system. Such methodologies for

ACM Computing Surveys, Vol. 21, No. 1, March 1989

58 l H. R. Hartson and D. Hix

interactive system development consider in-
terface management to be an integral part
of the overall development process and give
emphasis to evaluation in the development
life cycle. Finally, there are several differ-
ent types of control structures that govern
how sequencing among dialogue and
computational components is designed
and executed.

Visions of future work in human-com-
puter interface management are very excit-
ing, offering opportunities in many areas
within computer science, including formal
modeling, graphics, software engineering,
automated environments, database man-
agement, artificial intelligence, human fac-
tors, operating systems, and system
performance evaluation. Interface support
environments will become integrated into
the operating system and hardware archi-
tecture. The current trend is away from the
commonly used alphanumeric keyboard in-
put and frame-oriented, screen-at-a-time
displays toward graphics, dynamic displays,
and unusual devices and communication
media. With stereo 3-D graphics projected
within helmets, end-users will “walk”
through alternative realities of applications
from molecular structures to architectural
designs, navigating with body gestures and
voice commands. Development methodol-
ogies and tools will have to accommodate
devices, interaction styles, and input tech-
niques we cannot now imagine. Direct ma-
nipulation will be used to even greater
extents, and more attention will be given
to helping a dialogue developer produce
complex and dynamic output displays.
There is an increasing need for a taxonomy
of interface features and functions to help
organize the field.

The trend toward more complex inter-
faces in which dialogue and its semantics
are more tightly interwoven [Tanner and
Buxton 19841 will present challenges to
extend dialogue independence design tech-
niques. The shift in emphasis toward asyn-
chronism, concurrency, and multi-thread
dialogue will continue. Important contri-
butions will come from artificial intelli-
gence, including knowledge-based systems
for application areas, expert systems to aid
dialogue design, and improved natural lan-
guage processing. More “intelligence” will

be used in interfaces to adapt to the varia-
bility among human users. Interface man-
agement and software engineering will
continue to share the trend toward less code
writing and more automatic code genera-
tion. Human-computer interface manage-
ment will receive an increasing share of
attention within the interactive system de-
velopment process.

Progress on the computer science side of
human-computer interface management
will spawn requirements for future work by
our human factors colleagues. For example,
now that rapid prototyping is available, its
effective use in the iterative refinement
process to produce quality interfaces must
be more thoroughly explored and exploited.
Although summative evaluation will con-
tinue to be used for controlled testing of
isolated principles and will continue to con-
tribute to the theory of human factors for
human-computer interfaces, formative
testing of entire interfaces and entire sys-
tems will become a part of the development
process [Williges 1984; Wixon et al. 19831.
Similarly, stronger inputs from the cogni-
tive and behavioral sciences will contribute
to a better understanding of the basic proc-
ess of human-computer interaction and
will direct future computer science work in
this area. One of the most significant of
these is the need for improved usability in
the UIMS themselves.

The tools and techniques surveyed in this
article will not remain solely in the domain
of system developers. Much of what we
have discussed here will be integrated into
large applications themselves, becoming di-
rectly available to increasingly sophisti-
cated end-users. Database management
systems will be offered as utilities built into
applications with a large variety of inter-
face options. End-user performance meter-
ing aids will accompany commercial
software. Tools similar to those used by
dialogue developers will become available
to end-users for customizing their own
interfaces.

We have presented many concepts and
ideas in the field of interface management;
now it is time to see if they will really work.
This “seeing” will involve significant
evaluation effort and technology trans-
fer [Ehrlich 19851 to real-world application

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development 9 59

environments-everything from the space
shuttle to the ubiquitous personal com-
puter. Many of the easy questions are an-
swered, many difficult questions remain.
Human-computer interface management is
currently much more art than science.
Making the transition to a more scientific
approach, while maintaining a human per-
spective, promises to be a challenge for
human-computer interface management
research well into the future.

APPENDIX: A SAMPLER OF SYSTEMS
FOR HUMAN-COMPUTER INTERFACE
MANAGEMENT

The concepts discussed in the main part of
this paper establish a framework for the
management of human-computer interface
development. Embodiment of these con-
cepts requires application system develop-
ment facilities and tools that incorporate
the concepts, from the first phases of design
all the way through to implementation and
into the iterative refinement and mainte-
nance phases.

This appendix is a sampler that describes
several systems, which, to varying extents,
manage representation, design, implemen-
tation, prototyping, execution, evaluation,
and maintenance of interfaces for interac-
tive human-computer systems. We chose
representative systems for their breadth of
scope and the variety of ways in which
interface management and the entire ap-
plication system development process is ap-
proached. Many of these systems represent
foundational, landmark pieces of work
(either research or commercial) and, as
such, deserve recognition. Most (BLOX,
COUSIN, DMS, GWUIMS, Open Dia-
logue, RAPID/USE, Prototyper, State Dia-
gram Specification Interpreter, toolkit
UIMS, and the University of Alberta
UIMS) are systems for management of the
interface across many phases of the life
cycle, whereas a few (FLAIR II and RIPL)
are primarily rapid prototypers. These sys-
tems generally go beyond the realm of lim-
ited application-specific formats, devices,
and interaction techniques and address the
much more complex issues at the very heart
of human-computer interface manage-

ment. The rapid prototypers were included
in this appendix to emphasize the impor-
tance of this stage of the life cycle on inter-
active system development and to present
a variety of approaches to prototyping.

To collect the data for the systems in this
appendix, we sent a sizable questionnaire
to the groups developing each of these sys-
tems. We used information from the ques-
tionnaire extensively (in some cases,
verbatim, with permission) to prepare this
section, which is arranged essentially like
that of the questionnaire: The system is
described in general and then set in the
conceptual framework developed in the pa-
per. Several other features that classify and
describe such systems, but are not explicit
concepts of interface management, are also
given. The systems are presented in alpha-
betical order. They are intentionally not
compared since the purpose of this appen-
dix is rather to give the reader an overview
of each system. Descriptions are intended
to be complete but not necessarily detailed,
since many details have already been given
in other sections of the paper when specific
parts of these systems were used to illus-
trate a particular concept. The complete
form of the questionnaire, including expla-
nations of many of the terms, follows.

Format of Questionnaire

1. General description of system

2. Interface management concepts

ba:

i:
e.
f.

h”:

Dialogue independence:
Structural model of interface:
Representation of interface:
Interface development tools:
Dialogue developer role:
System development methodology:
Rapid prototyping:
Control structure:

3. Features of system

a. Internal representation of interface
definitions (e.g., tables, relational
databases, executable code):
l At implementation time:
l At prototyping time:
l At run time:

ACM Computing Surveys, Vol. 21, No. 1, March 1989

60 l H. R. Hartson and D. Hix

b. Lexical constraints (e.g., Does your
system handle character-at-a-time
validation of end-user input?):

c. Input dialogue (Is your system used
to produce dialogue to extract inputs
from the end-user? If so, how does
this dialogue validate (check for er-
rors in) end-user input, or are inputs
validated by the computational com-
ponent?):

d. Output dialogue (Is your system used
to format and display data dependent
computational results-e.g., infor-
mation retrieved from a database-
as well as to develop input-related
dialogue? If so, how does it deal with
these types of output for which the
form and values are not bound (or
known) until run time?):

e. Relationship between input and out-
put dialogue (How do you make this
distinction, if you do, in your ap-
proach? How do you classify things
like error messages, prompts, and
help information in this regard?):

f. Help (Do your interface development
tools provide specifically for the de-
velopment of help information? If so,
how?):

g. Pragmatics (Does your system or
your work address end-user gestures
and actions, physical device charac-
teristics, and other “pragmatic? of
interfaces? If so, how?):

h. Multiple input devices (Can more
than one physical input device be
active at one tim,e? If so, how?):

i. Support environment and graphics
(What hardware and software does
your system run on? Does your sys-
tem make extensive use of graph-
ics?):

4. Miscellaneous questions

a. Human factors built in (Do the tools
of your system enforce specific hu-
man factors principles within the dia-
logue development process?):

b. Sequential versus asynchronous dia-
logue (Do your dialogue development
tools produce dialogue that is essen-
tially sequential or can they also pro-
duce asynchronous dialogue?):

ACM Computing Surveys, Vol. 21, No. 1, March 1989

c. Generality of interaction style (Is your
system oriented toward a specific in-
teraction style-e.g., menus, graphi-
cal input, form filling-or is it more
general?):

d. Interface evaluation (Does your work
address evaluation of interfaces? If
so, how?):

5. Implementation

,“:

i:

e.

f.

Languages:
Operating system:
Date work begun:
Status (experimental, internal prod-
uct, commercial product):
Personnel (computer scientists, hu-
man factors experts, psychologists,
other):
Self-creating (Could your system be
used to design/create itself?):

BLOX Graphics Builder

1. General Description of System

BLOX Graphics Builder, developed and
marketed by Rubel Software of Cambridge,
Massachusetts, is designed to reduce the
amount of programming required to create
graphics application screens, menus, and
icons [Rubel 19821. The end-user interface
is developed interactively using the BLOX
direct manipulation tools, TableGEN, and
SymbolEDIT.

The BLOX screen editor, TableGEN, is
used interactively to draw interface screen
layouts and menus with pen or mouse. An
interface can contain any number of screen
layouts, including multiple work, message,
and menu areas. Menus contain text and
graphical icons. Each menu item has an
associated prompt string and action sub-
routine, supplied either by BLOX or by the
application developer. BLOX provides de-
faults for all interface attributes and re-
sponses. These defaults can be changed by
the application developer.

With the BLOX icon editor, Symbol-
EDIT, pen or mouse is also used interac-
tively to draw graphical icons and store
them in sets. Each set of icons can be later
retrieved and edited interactively. Icons
can be used as menu items in an application
interface or as part of an application data

Human-Computer Interface Development 9 61

display, such as a diagram or chart that
includes predefined symbols. Icons can be
displayed with any scale and rotation.

BLOX HelpGEN automatically gener-
ates an on-line help keyword file for an
application. This file contains a keyword
for each menu item or other area of the
application screen. Any standard text edi-
tor can be used to insert customized help
information into this file. On-line help is
retrieved at run time by pressing a “help”
button and pointing at the part of the
screen in question.

Two BLOX Subroutine Libraries are
provided for use with BLOX-built applica-
tions. These libraries provide many pre-
coded functions for the application
developer. The BLOX User Interface Li-
brary is a collection of subroutines for
query and manipulation of the end-user
interface. These include displaying prompt
lines, pop-up menus, new screen layouts,
icons, grids, and many more. The BLOX
Graphics Library is a more traditional
graphics subroutine library, with the ability
to draw graphics primitives such as lines,
circles, arrows, text, and filled areas.

BLOX facilitates rapid prototyping by
allowing dialogue developers to draw sym-
bol sets and interface screens quickly and
then “testdriving” the end-user interface
before linking to application code. BLOX
development tools enable developers to
produce a standard end-user interface for
all graphics applications, regardless of
hardware configuration. BLOX can be used
to develop interactive graphical end-user
interfaces for existing code, as well as for
new applications under development.
BLOX, written in FORTRAN, can be used
with any programming language that is
compiled and callable from FORTRAN.

Once an interface has been designed,
BLOX automatically links it to application
code through the BLOX Interaction Han-
dler. The Interaction Handler responds to
all end-user or machine-generated input.
BLOX supports input devices such as pen,
mouse, and keyboard and input techniques
such as graphical menu selection and mul-
tiple button input. Typical response to in-
put includes display of graphics, prompt
messages, new screen layouts, pop-up
menus, or calls to coded subroutines. Coded

subroutines can be either BLOX or devel-
oper supplied and can be written in any
compiled programming language. BLOX,
being machine, device, and application in-
dependent, has been used to develop appli-
cations in diverse scientific, engineering,
and academic areas.

2.

a.

b.
C.

d.

e.

f.

g.

h.

Interface Management Concepts

Dialogue independence: Interface devel-
opment is completely separated from
that of computational code. Application
action routines can be associated with
menu buttons during menu design, but
the two parts of the application are
treated independently.
Structural model of interface: None.
Representation of interface: Done us-
ing interactive tools, TableGEN and
SymbolEDIT.
Interface development tools: Symbol-
EDIT lets the dialogue developer pro-
duce iconic symbol sets that can be
accessed during application screen and
menu design. TableGEN lets the devel-
oper indicate where work areas, menu
areas, and message areas are desired. In
the case of menu areas, the contents are
also represented interactively. All areas
are given default properties, which can
be easily changed by the developer.
Dialogue developer role: Role is sup-
ported by direct manipulation tools for
interface development.

System development methodology: None.
Rapid prototyping: Simple end-user in-
terfaces can be designed quickly.
TableGEN lets the developer produce
an interface with any combination of
work, menu, and message areas. Once
an interface has been designed in a
TableGEN session, the end-user can
“test-drive” it. The interface is shown
full screen before any application code
is linked. Several test-drive sessions are
generally run before an interface is
linked into application code.

Control structure: BLOX is a dialogue
dominant or external control UIMS. It
likes to be the “controller” of the appli-
cation. The application and interface,

ACM Computing Surveys, Vol. 21, No. 1, March 1989

62 l H. R. Hartson and D. Hix

3.

a.

b.

c.

a.

e.

f.

h.

1.

however, can be influenced by compu-
tational functions, as well as by input
from the end-user.

Features of System

Internal representation of interface defi-
nitions

l At implementation time: Tables gen-
erated from drawings during a “test
drive.”

l At prototyping time: Tables.
l At run time: Tables compiled into bi-

nary.

Lexical constraints: Handled as input
dialogue. 4.
Input dialogue: End-user input valida-
tion is the responsibility of the compu- a*
tational component.
Output dialogue: Must be programmed
by an application programmer.
Relationship between input and output
dialogue: Three BLOX area types- b
work, menu, and message-provide the .
standard for distinguishing between in-
put and output dialogue. BLOX work
areas are for both end-user input and
application output and display. Menus
are solely for end-user input. Message c.
areas are solely for application output.
Error messages, prompts, and help are
contained in message areas. Given these
distinctions, it remains the decision of
the application designer as to where and
how these areas are used. d.

Help: A BLOX development tool,
HelpGEN, automatically generates help
keyword files for each BLOX area and
menu item. These files can then be ed-
ited with a text editor.
Pragmatics: BLOX is based on interac-
tive end-user input, through the use of
menus and interactive work areas.

systems (SUN, Silicon Graphics, Mass-
camp, Cadmus, and Orcatech). BLOX
includes an implementation of the Core
graphics library. Although BLOX is
written in FORTRAN, it can be used
with any programming language that is
compiled and callable from FORTRAN.
BLOX was designed specifically for
graphics applications. Icons are devel-
oped by the application developer and
then used in the application at run time.
BLOX areas are generally used for
graphics display, although developers
can use text in conjunction with
graphics.

Miscellaneous Questions

Human factors built in: There are very
few constraints placed on a dialogue de-
veloper. BLOX helps developers build
applications quickly but does not elimi-
nate the possibility of a badly designed
interface.
Sequential versus asynchronous dia-
logue: BLOX is based on sequential,
turn-taking dialogue. End-user input
triggers a computer process, display, or
other reaction.
Generality of interaction style: BLOX is
designed around graphical menus. Items
are selected by pointing, rather than by
typing a selection’s number. End-user’s
input can also be entered through the
graphical work area.
Interface evaluation: Interfaces are eval-
uated during the design process (see ear-
lier explanations of “test drive”) by the
application developers and others.
BLOX itself makes no attempt to eval-
uate an interface. Because BLOX inter-
faces are easily modified, end-users can
also critique interfaces.

BLOX Graphics Builder requires spe- 5. /mn/emenration
cific device drivers for particular graph- ’
its terminals. a. Languages: FORTRAN.

Multiple input devices: Single process b. Operating system: VMS, UNIX.

dialogue system. c. Date work begun: 1982.

Support environment and graphics: d. Status: Commercial product.
Currently runs on VAX/VMS, VAX/ e. Personnel: Four computer scientists;
UNIX, and several 68000-based UNIX three sales/marketing.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 63

f. Self-creating: Yes. BLOX Graphics
Builder’s tools are based on the three
BLOX areas and could have been built
with BLOX. BLOX has been used to
continue development of the product.

COUSIN

1. General Description of System

The COUSIN (Cooperative User INterface)
system [Hayes 1985; Hayes and Szekely
1983; Hayes et al. 1981, 19851 of Phil
Hayes, Eugene Ball, Raj Reddy, Richard
Lerner, and Pedro Szekely at Carnegie-
Mellon University has an artificial in-
telligence flavor and deals with natural
language understanding but nicely illus-
trates some interface management con-
cepts, especially dialogue independence or
“tool independence.”

Early COUSIN research revolved around
definition of a quality interface that sup-
ports graceful interaction just as human-
to-human communication is graceful and
robust. Such interaction thus goes well be-
yond the traditional principles of human-
computer interaction and into the realm of
natural language understanding [Hayes
and Reddy 19831. Because of the enormous
difficulties of producing such an interface,
the researchers propose to amortize this
effort by building a single, application-in-
dependent (“tool-independent”) system to
serve as the end-user interface for a variety
of subsystems rather than developing a sep-
arate interface for each application system.
The implication in Hayes et al. [1981] is
that there is one interface for many appli-
cation systems (tools) and that interface
does not contain information about a par-
ticular application but obtains a declarative
definition of the application from a tool
description database. A subsequent report
[Hayes and Szekely 19831 states that this
declarative database contains definitions of
the end-user communication (interface)
needs of an application system and that a
single tool-independent interface inter-
preter is used to instantiate the interface
for that application system. A significant
contribution of the COUSIN work is that
its dialogue-dominant control structure de-
parts from strict sequential dialogue and

handles concurrency of many communica-
tion media (e.g., simultaneous pointing,
speaking, and typing).

More recent work on COUSIN has
evolved an interface definition centered
around form-based interface abstractions,
expressed in a language that is interpreted
[Hayes 19851. Such an interface definition
consists of a declaration of the form name
followed by a sequence of field definitions
containing attributes. COUSIN’s interface
definition language is based on a commu-
nication abstraction between end-user and
application in which communication takes
place through a set of value-containing
“slots’‘-one slot for each piece of infor-
mation the end-user and application need
to exchange. A simple print application
might have slots for its parameters, such as
the file to print and number of copies. Ex-
ternal interface definitions expressed in
form-based abstractions are used by COU-
SIN to provide a wide variety of applica-
tions with consistent, quality interfaces.
End-users of systems produced with COU-
SIN interact with those systems by filling
forms. End-users specify parameters to a
command by filling in the appropriate fields
in the form (in any order) and then execute
the command. Further interaction with the
command while it is running is also done
by displaying or changing data in fields.
Fields in the form correspond to slots in
the interface definition. At run time there
are two processes per application system:
One is the application system itself and the
other is COUSIN, operating to support the
application system. COUSIN interprets the
interface description, puts bits on the
screen, and interprets keystrokes on behalf
of the application system. Future efforts
will concentrate on providing a larger spec-
ification process.

2. Interface Management Concepts

a. Dialogue independence: Yes. The dia-
logue developer is encouraged to think
in terms of pieces of data exchanged by
the application and the end-user, not in
terms of how data are displayed or how
the end-user modifies it. This is done
with “slots.” Application programs ac-
cess slots with a set of accessor routines.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

64

b.
C.

d.

e.

. H. R. Hartson and D. Hix

The end-user accesses slots via a graph-
ical form-based representation of the
slots.
Structural model of interface: None.
Representation of interface: Dialogue is
represented by defining “interaction
modes” of fields. The interaction mode
specifies both how to display a field
(icon, text string, menu, etc.), and how
to interpret input events directed to that
field. Control of the dialogue (what to
do next) is not represented explicitly.
Dialogue representation consists of a set
of [attribute, value] pairs for each field
of the form.
Interface development tools: The [attrib-
ute, value] pairs are represented as a
text file with a text editor. COUSIN also
has a graphical editor that can be used
to edit the compiled version of the rep-
resentation and is capable of generating
a textual description. The COUSIN in-
terface to construct the [attribute,
value] pair that is the dialogue represen-
tation has a field for each attribute; the
value of the field is the value of the
attribute. A layout editor is a WYSI-
WYG editor to edit the layout of the
end-user form. A mouse can be used to
move edges of fields or to enter numbers
in another form to represent coordinates
of fields.

Dialogue developer role: COUSIN uses
two roles. An application program
builder develops the application pro-
gram using a set of routines provided by
COUSIN to access or update the values
of slots. A dialogue developer, called an
end-user interface writer, develops the
interface description using the tools de-
scribed above. The application program
builder and the dialogue developer have
to agree on the number and type of
slots.

f. System development methodology: No
particular methodology is used. Several
“nontoy” systems, however, have been
developed using COUSIN. Development
is iterative, starting with a simple appli-
cation program with a few slots and then
adding more functionality by adding
more slots (and commands).

h.

3.

a.

b.

C.

Rapid prototyping: COUSIN allows easy
building of facades/mockups of appli-
cation programs. COUSIN can generate
a usable form for an application pro-
gram from the interface description, and
there is an application program called
“cappl” (COUSIN-application), which
can be used as a dummy with any inter-
face description. Forms with fields for
unimplemented commands are easily
produced. The end-user can interact
with the form, but upon invoking an
unimplemented command, a “Not Yet
Implemented” message is displayed.

Control structure: Sequencing is mostly
external, controlled by the end-user.
When the application program needs
some data, however, it can take the ini-
tiative and force the end-user to respond
to questions. This second mode is in-
tended to be used only when necessary.
COUSIN encourages the external,
dialogue dominant method of com-
munication.

Features of System

Internal representation of interface defi-
nitions

l At implementation time: Complicated
set of data structures that represent
“slot” values.

l At prototyping time: Complicated set
of data structures that represent
“slot” values.

l At run time: Complicated set of dat.a
structures that represent “slot” val-
ues.

Lexical constraints: COUSIN takes all
characters and inserts them into a
buffer. Validity can be checked when a
“break” key is hit, but each interaction
mode can check its input at any point.
In this case input is not validated a
character at a time.

Input dialogue: COUSIN extracts all in-
put from the end-user. COUSIN knows
about a few data types (e.g., integer,
string, Boolean) and has a very simple
constraint language. It can recognize
simple errors and interact with the

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 65

d.

e.

f.

g-
h.

1.

end-user to correct them before giving
the data to the application program.
COUSIN cannot, however, recognize
application program-specific semantic
errors.
Output dialogue: COUSIN updates a dis-
play whenever a change is made to a
slot, which is controlled by the interac-
tion mode of that slot.
Relationship between input and output
dialogue: Such components as prompts
or error messages are not explicitly clas-
sified as either input or output. In COU-
SIN each interaction mode has its input
strongly linked with its output, but in-
teraction modes are independent of each
other. Dialogue is divided into “chunks,”
each chunk being an interaction mode
that is not divided into an input and an
output part.

Help: COUSIN emphasizes a help sys-
tem, generating two levels of help. Short
help is a line of text specifying the pur-
pose of a field. Long help allows the end-
user to traverse a network of help frames
describing the application program.
Short help messages are represented in
the interface definition. Help frames for
long help are generated by COUSIN
from the run-time state, the interface
definition, and a text file.
Pragmatics: No.
Multiple input devices: Both keyboard
and mouse are active at the same time.
Events from devices are represented as
messages from processes. Hence, events
from multiple devices appear mixed with
each other in a message queue and are
handled by COUSIN with priorities by
“time slicing” between them.
Support environment and graphics:
COUSIN runs on Perq workstations
with graphics display and mouse. The
operating system is “Accent,” which
provides fast message-based communi-
cation between multiple processes.
COUSIN runs as a separate process
from the application program for which
it provides an interface. COUSIN makes
moderate use of graphics. A portion of
the screen can be defined.as a graphics
area and information from this area

passed to the application program. The
application program directly calls
graphics package routines to paint that
area.

4. Miscellaneous Questions

a.

b.

C.

d.

Human factors built in: COUSIN pro-
duces interfaces that are fill-in-the-
blank forms. No constraints, however,
are placed on the format and content of
these forms.
Sequential versus asynchronous dia-
logue: Since COUSIN and the applica-
tion program execute in separate
processes, the end-user can interact
with the form of an application program
even when the application program is
computing. For example, an end-user
can enter parameters for the next com-
mand while the current one is executing.
A locking mechanism prevents interfer-
ence between the end-user and the ap-
plication program.
Generality of interaction style: Form fill-
ing, with limited graphical interaction.
Interface evaluation: No.

5. Implementation

a. Languages: Dialect of Pascal.
b. Operating system: Accent.
c. Date work begun: 1981.
d. Status: Experimental.
e. Personnel: Three computer scientists.
f. Self-creating: The tool to edit interface

descriptions is itself a form produced by
COUSIN.

Dialogue Management System (DMS)

1. General Description of System

The Dialogue Management System (DMS)
[Hartson et al. 1984; Hix and Hartson 1986;
Roach et al. 19821 being developed at Vir-
ginia Tech by H. Rex Hartson, Deborah
Hix, and Roger W. Ehrich, is a comprehen-
sive system for interface management. An
application system developed using DMS
is viewed as having three components: a
dialogue component through which all

ACM Computing Surveys, Vol. 21, No. 1, March 1989

66 l H. R. Hartson and D. Hix

communication between the end-user and
the application system is carried out, a
computational component that contains all
semantic processing algorithms, and a
global control component that governs
logical sequencing among dialogue and
computational components. Dialogue in-
dependence forms the fundamental philos-
ophy of DMS and helps ensure easy
modification of the interface, allowing two
or more very different interfaces to be used
with the same computational and global
control components.

Interface management is considered to
be an integral part of the overall software
engineering process. To support this prem-
ise, a system development methodology and
evaluation-centered (“star”) life cycle have
been produced as part of the DMS research.
The methodology (called the SUPERvisory
Methodology And Notation, or SUPER-
MAN, in early versions) integrates devel-
opment of all three components of an
application system using a technique called
supervised flow diagrams to represent the
design of a system. Supervised flow dia-
grams are an executable representation of
control flow and data flow in all compo-
nents of the target application system being
developed using DMS.

The DMS Design-Time Facility provides
an integrated set of tools for interactively
developing each of the three components.
A dialogue developer designs, implements,
and modifies the dialogue component (the
human-computer interface) using a set of
tools (called the Author’s Interactive Dia-
logue Environment, or AIDE, in early ver-
sions). These direct manipulation tools
allow the dialogue developer to work with
objects, rather than source code, when de-
veloping an interface. DMS also contains a
graphical programming language (GPL) ed-
itor that is used interactively to develop
supervised flow diagrams for the global con-
trol and computational components. A spe-
cialized version of the GPL editor, used
to develop supervised flow diagrams in
the dialogue component, is constrained to
conform to the DMS structural dialogue
transaction model. The computational
component is designed and implemented
largely using a conventional programming
support environment.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

The rapid prototyper, called the Behav-
ioral Demonstrator, allows early and con-
tinuous evaluation and modification of an
application system design. At run time, dia-
logue executors and mechanisms for linking
all the components support execution of
application systems produced by DMS.

An evaluation of DMS has shown its
tool-based approach to interface develop-
ment to be faster than conventional meth-
ods involving source coding. In an empirical
study, the use of AIDE for implementing
an interface produced a nearly four-to-one
improvement in speed over the use of pro-
gramming for implementing the same in-
terface. The DMS methodology and
approach have been used successfully to
develop a number of substantial applica-
tions, including a relational database, a
document storage and retrieval system, and
DMS itself. Two versions of DMS have
been implemented, and DMS 3.0 was due
for completion in late 1988. DMS 3.0 is
built on a Smalltalk- (object-oriented)
platform running on a Macintosh II. DMS
3 makes more extensive use of direct ma-
nipulation in its own interface than pre-
vious versions did. DMS 4 will have a
greatly expanded capability to produce di-
rect manipulation, multi-thread, and asyn-
chronous dialogue in application system
interfaces.

2.

a.

b.

C.

Interface Management Concepts

Dialogue independence: Dialogue is sep-
arated from computation and global
control at design time; raw dialogue to-
kens to and from the interface are
mapped to normalized tokens for use
throughout the rest of the application
system.
Structural model of interface: A dialogue
transaction model describes the human-
computer dialogue at three linguistic
levels: semantic, syntactic, and lexical.
Representation of interface: At the se-
mantic level, dialogue transactions are
represented in supervised flow dia-
grams. At the syntactic and lexical lev-
els, AIDE tools are provided for
representing such interface objects as
screen layouts, input definitions, and
token mappings.

a.

e.

f.

g-

h.

Human-Computer Interface Development l 67

Interface development tools: The dia-
logue developer does not write source
code to implement dialogue but rather d.
uses AIDE to produce interface objects
by direct manipulation.
Dialogue developer role: Yes; it uses
AIDE to implement interfaces.
System development methodology: The
SUPERvisory Methodology And Nota- e.
tion (SUPERMAN) is used to develop
a human-computer system through all
stages of an evaluation-centered (“star”)
development life cycle.
Rapid prototyping: The Behavioral
Demonstrator is used to execute super-
vised flow diagrams, demonstrating
parts of the evolving application system f.
as they are developed. Stubs and tem-
porary values for yet undefined vari-
ables are provided for those parts that
are not yet developed.
Control structure: Balanced control in g.
which the global control component
governs sequencing among dialogue and
computational functions.

3. Features of System
h.

a.

b.

C.

Internal representation of interface defi-
nitions
l At implementation time: Relations in

database.
l At prototyping time: Relations in da- .

tabase. 1.

l At run time: Relations in database.
Lexical constraints: End-user inputs are
processed a single end-user action at a
time, allowing immediate validation of
inputs.
Input dialogue: At run time, lexically
validated keystrokes or other actions 4,
from the end-user are collected into to-
kens (interactions) as directed by the a.
input definition. These tokens are syn-
tactically validated and collected into
sentences (transactions, e.g., a complete b.
command with its operands). Actions,
interactions, and transactions are de-
fined by the dialogue developer at design
time using AIDE. Validated and nor-
malized tokens of a transaction are
passed, via the global control compo-

nent, to the computational component
at run time.
Output dialogue: At run time, a dynamic
output executor accepts results of com-
putational processing and displays re-
sults to the end-user based on definition
of the output produced by the dialogue
developer using AIDE at design time.
Relationship between input and output
dialogue: Dialogue objects can be defined
as both output and input objects so that
these two kinds of dialogue can be linked
(e.g., a graphical object can be displayed
as computational output and then
picked for manipulation by the end-
user).
Help: Dialogue development tools do not
provide specifically for the development
of help information but can be used to
produce help just as they are used for
any part of the dialogue.
Pragmatics: Physical devices and end-
user gestures are represented at the low-
est level of the interface definition;
above this, interface definition is device
independent.
Multiple input devices: Theoretically,
any number of physical input devices
can be active at one time if the dialogue
developer designs the interface this way.
The run-time dialogue executor has the
capability to poll devices and read the
appropriate one(s).
Support environment and graphics: A
Silicon Graphics IRIS 2400 Worksta-
tion running UNIX and Smalltalk-
on a Macintosh II. Graphical display
objects can be produced with a graphical
editor, one of the DMS interface devel-
opment tools.

Miscellaneous Questions

Human factors built in: No; theoretically
there are no constraints on the inter-
face.
Sequential versus asynchronous dia-
logue: All versions of DMS support a
broad variety of sequential dialogue in-
teraction styles. Direct manipulation
and asynchronous dialogue are sup-
ported in DMS 3 and, to a greater, ex-
tent, will be in DMS 4.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

68 . H. R. Hartson and D. Hix

C.

d.

5.

a.

b.

C.

d.
e.

f.

Generality of interaction style: Any in-
teraction style can, in theory, be created
and executed using DMS development
tools.
Interface evaluation: Metering of end-
user input is allowed at each of the three
linguistic levels. Metering of dialogue
development activities will be provided
in the future.

implementation

Languages: DMS 2, -C; DMS 3, -
Smalltalk-80.
Operating system: DMSB, -UNIX (on
a Silicon Graphics IRIS 2400 Worksta-
tion); DMS 3 -Smalltalk (on a Macin-
tosh II).
Date work begun: DMS 1, -1980; DMS
2, -1985; DMS 3, -1987.
Status: Experimental research product.
Personnel: Three computer scientists,
varying numbers of graduate students
and programmers.
Self-creating: In theory, yes; implemen-
tation is not advanced enough at this
time for DMS to produce itself.

FLAIR II

1. General Description of System

FLAIR II (Functional Language Articu-
lated Interactive Resource) [Wong and
Reid 19821 developed at TRW by Peter
Wong, Eric Reid, Phil Schmidt, and
Christopher Barbay, is an interface rapid
prototyping system capable of prototype
generation and interpretive or compiled ex-
ecution of the prototype. This color graph-
ics based tool is intended for development
of interactive systems for either menu-
based or keyword-based interactive sys-
tems. Prototype developers can use
FLAIR’s show-by-example menu method
to produce dialogues for single or multi-
screen graphics systems. FLAIR can handle
a variety of input devices, from keyboards
to voice recognition devices. Menu selec-
tions allow an extensive library of FLAIR
development tools (called microprimitives),
such as maps, symbols, constructors, and
other graphics entities, to be accessed at

the touch of a button. The Shell, an inter-
face developed specifically for FLAIR, can
dynamically link the prototype’s execution
to the end-user application routines. Any
VAX text editor can easily modify the com-
mand files generated by FLAIR to change
the behavior, graphics, and application
linkages.

The FLAIR interface is considered to be
a Dialogue Definition Language (DDL), a
menu-driven system that directs a dialogue
developer through a coherent and orderly
translation of the prototype into a form
that is executable as an end-user system.
FLAIR deciphers and codes initial proto-
cols of the input/output devices as a single
standard set of protocols for the prototype
being developed. FLAIR has static frames,
scenario dialogues, and dynamic system
scenarios to support system development.
Static frames allow construction, storage,
and retrieval of a picture. Scenario dia-
logues display a sequence of frames, control
the sequence of frames logically as a result
of interactive end-user inputs, and audit
and time-stamp end-user prototype inter-
action for later analysis. Dynamic system
scenarios simulate multiple work station
communications and environmental con-
ditions in order to measure an end-user’s
responses.

FLAIR can be used in most interactive
computing situations. The system has
been used in prototyping computer-aided
instruction (CAI) systems; command,
control, communication, and intelligence
(C31) systems; computer-aided engineering
(CAE) systems; cartographic systems; and
as a front-end driver for decision support
for various prototype systems. Use of
FLAIR has resulted in approximately a
two-to-one reduction in time required for
building graphical interactive displays.

2. Interface Management Concepts

a. Dialogue independence: Dialogue is sep-
arated from computation. FLAIR can
calculate dynamic values; end-users can
attach their own programs to FLAIR
during run time for additional compu-
tational requirements.

b. Structural model of interface: None.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 69

C.

d.

e.

f.

iit.

h.

3.

a.

b.

C.

d.

e.

Representation of interface: Dialogue
representation is done either of two
ways: show by example or keyword en-
tries. In show by example, the developer
draws an example of what some portion
of the interface is to look like. For key-
word entries, the developer defines a
typed command string; keywords of
functions represent what the function is
to do.
Interface development tools: Initial rep-
resentation is done by pointing or key-
word. Subsequent dialogue editing is
done through a text editor. By using a
pointing device one can show FLAIR
how to proceed in a dialogue.
Dialogue developer role: Not explicitly;
system designer provides the overall
scheme.
System development methodology: Not
bound to a specific methodology.
Rapid prototyping: FLAIR is primarily a
rapid prototyper.
Control structure: Primarily dialogue
dominant; control structures can be
built into any graphics (dialogue) enti-
ties.

Features of System

Internal representation of interface defi-
nitions
l At implementation time: Semistate

table, textual code.
l At prototyping time: Semistate table,

textual code.
l At run time: Compiled state table with

binary code.
Lexical constraints: System handles
range, exception, and inclusion value
checking if the developer wants to put
these constraints in the system. String
checking can be done for string size and
string match.
Input dialogue: Input device dependent
modules accept and translate end-user
input device signals.
Output dialogue: Subroutine calls to
FLAIR can be used by the system de-
signer in the output dialogue.
Relationship between input and output
dialogue: No distinction made.

f.

g-

h.

1.

4.

it:

C.

d.

5.

a.
b.

Lt.
e.
f.

Help: No specific tools.
Pragmatics: Handles graphics tablets,
light pen, joystick, mouse, touch panel,
trackballs, function keys, voice recogni-
tion, and (in the future) complete vision.
Multiple input devices: No, single device
at a time.
Support environment and graphics:
Runs under VMS 4.1 using Core graph-
ics. FLAIR is based on graphical as well
as keyword dialogue; both can interface
to control structures.

Miscellaneous Questions

Human factors built in: No.
Sequential versus asynchronous dia-
logue: Generally produces sequential
dialogues; however, an environmental
generator can perform concurrent pro-
cessing for some asynchronous dia-
logues.
Generality of interaction style: Menus,
graphical input, keyword/sentences,
voice recognition, and form prompting
are supported.
Interface evaluation: Not directly; how-
ever, an audit trail can be generated for
dialogue error evaluation.

Implementation

Languages: FORTRAN, Assembler.
Operation system: VMS 4.1.
Date work begun: February 1981.
Status: Internal product.
Personnel: Four computer scientists.
Self-creating: Probably.

George Washington University UIMS
(GWUIMS)

1. General Description of System

This research represents an attempt to de-
velop a general architecture for user inter-
face management system development that
is in some ways analogous to an expert
systems shell for expert systems develop-
ment. This UIMS was developed by John
Sibert, Dave Hurley, and Teresa Bleser at
the George Washington University. Based

ACM Computing Surveys, Vol. 21, No. 1, March 1989

70 l H. R. Hartson and D. Hix

on an object-oriented programming para- - - h. Control structure: Dialogue dominant
digm, it is a departure from traditional
UIMS development [Sibert et al. 19881.
The GWUIMS is related to earlier work at
GWU by its incorporation of Foley’s three
levels of an interaction language: lexical, 3.
syntactic, and semantic levels. These three
levels are incorporated by embodying the a.
boundaries between levels within object
classes. This was determined by the obser-
vation that many of the hardest end-user
interface design problems seem to involve
the boundaries between Foley’s levels and
by the desire to provide for intelligence at
those boundaries.

control is resident in the support envi-
ronment.

Features of System

Internal representation of interface defi-
nitions

At implementation time: Executable
LISP code with some tables and com-
piled C code.
At prototyping time: Executable LISP
code with some tables and compiled C
code.

Interactive interfaces are represented by
direct manipulation customizing of inter-
face objects “cloned” from an object tem-
plate library. The motivation is to provide b.
interactive rapid prototyping for a variety
of dialogue styles. This is a research-
oriented system, currently supporting only
a few interaction techniques and minimal
design tools.

C.

2.

a.

b.

C.

d.

e.

Interface Management Concepts

Dialogue independence: Computation is
carried out by “application objects” that
communicate with dialogue objects by d.
message passing.
Structural model of interface: Layered,
based on semantic, syntactic, and lexical e.
language levels.
Representation of interface: Abstract ob-
jects; language representation is inter-
active customizing of “template” objects
such as menus. f.

Interface development tools: Direct ma-
nipulation tools, often using menus. 65
Dialogue developer role: Builds and tests h.
individual manipulation techniques as
well as dialogues; essentially a combi-
nation of authoring and graphic design.
System development methodology: No
specific methodology but uses a combi-
nation of top-down design with iterative
enhancement and refinement. 1.

Rapid prototyping: Rapid prototyping
uses a set of generic application objects
that simulate a variety of behaviors us-
ing probabilistic simulations.

At run time: Compiled LISP and ta-
bles and compiled C code.

Lexical constraints: Lexical constraints
handled with arbitrary interaction tech-
niques written in C code and interfaced
to the LISP environment.

Input dialogue: Some end-user errors are
trapped by dialogue (e.g., clicking mouse
when there is no target). Semantic er-
rors are detected generally by applica-
tion objects that report success or failure
back to the appropriate dialogue object.
Output dialogue: All messages and
prompts are defined as representation
objects, which are output.
Relationship between input and output
dialogue: Input dialogue is handled by a
set of “interaction objects,” and output
dialogue is handled by a set of “repre-
sentation objects.”
Help: Developed in the same way as any
message.
Pragmatics: Currently being researched.
Multiple input devices: Yes; uses a “lis-
tener object” similar to that found in
most window systems. Uses a table-
driven parser to determine an appropri-
ate action in response to events from
devices; any movement of an active de-
vice is an event.
Support environment and graphics:
Runs under UNIX and is programmed
in Franz LISP and Flavors. Graphics is
all pervasive as icons, process indica-
tors, and interaction techniques.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 71

4.

a.

b.

C.

d.

5.

;:

:.

e.

f .

Miscellaneous Questions

Human factors built in: No; system is
intended to provide for inclusion of hu-
man factors.
Sequential versus asynchronous dia-
logue: Can produce more than just se-
quential dialogues, although limited by
operating system considerations in ac-
tual performance.
Generality of interaction style: General;
new interaction techniques can be
added.
Interface evaluation: Not specifically ad-
dressed at this time.

Implementation

Languages: LISP (Franz, Flavors).
Operating systems: UNIX.
Date work begun: March 1985.
Status: Experimental.
Personnel: Three computer scientists,
one artist.
Self-creating: Yes.

Open Dialogue

1. General Description of System

Open Dialogue is a follow-on product to
Domain/Dialogue, an Apollo product first
released in 1985 [Schulert et al. 19851.
Like Domain/Dialogue, Open Dialogue al-
lows a dialogue developer to use a declara-
tive definition language to describe the
human-computer interface to an applica-
tion separately from the application itself.
This interface definition can be bound with
the application or saved in a file and loaded
at run time. The application can be written
in most conventional programming lan-
guages, including C, FORTRAN, and
Pascal.

Open Dialogue differs from Domain/Dia-
logue in many ways. The most significant
difference, from a practical point of view,
is that it is designed to run on machines
other than Apollo workstations. It is cur-
rently layered on UNIX and the X Window

System, but could, in theory, be moved to
other platforms.

Like Domain/Dialogue, Open Dialogue
has an object-oriented design. An interface
is constructed out of “objects,” such as
menus and pop-ups. Each object has a
“class,” or type, that defines its behavior.
An interface is defined by specifying a set
of objects and their interrelationships.
Open Dialogue is extensible through addi-
tion of new classes by application devel-
opers. Internal interfaces and abstract
classes are made available to developers,
allowing them to implement additional
classes in C++, the system implementation
language. These classes are fully integrated
with the rest of the system, including all
interface definition tools.

Domain/Dialogue requires that an inter-
face be defined separately from an appli-
cation before it is run. Open Dialogue
supports this model but also allows addi-
tional interface components, or even the
entire interface, to be defined at run time.
Furthermore, since the object definition fa-
cilities are accessible to applications, devel-
opers can write then own interface
definition tools.

Open Dialogue does not impose a specific
style on interfaces developed with it. It
does, however, allow consistent interfaces
to be encouraged through definition of
“templates.” A template describes a portion
of an interface, a grouping of one of more
objects along with attributes describing
their appearance and behavior. A template
can be instantiated any number of times.
Each instantiation can be customized
by further specifying or overriding object
attributes.

External or dialogue dominant control of
an application is encouraged. Open Dia-
logue allows the application to be written
as a subroutine library. It will acquire in-
formation for all input parameters from the
end-user based on the interface definition.
It will take results of the function call and
present them to the end-user, also based on
the interface definition. The application
can, however, treat Open Dialogue as a
subroutine package itself, making calls to
inquire and set values and to request a
stream of input events.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

72

2.

a.

b.

C.

d.

e.

. H. R. Hartson and D. Hix

Interface Management Concepts

Dialogue independence: A dialogue de-
veloper creates the interface in a dia-
logue definition source file, which is
compiled separately from the applica-
tion.

Structural model of interface: Human-
computer interaction is modeled by
three general pieces: application objects,
graphic objects, and data transformer
objects (some of which simply contain
data). Application objects provide a
means for application callbacks and re-
turns. Graphic objects provide end-user
interaction and layout pieces of the in-
terface. Data transformer objects trans-
form data from one type to another (e.g.,
string to integer) and hold data.

Representation of interface: A textual
dialogue definition language is compiled
to create an interface definition. Work
is under way on an interactive design
tool that will initially allow all graphical
aspects of the interface to be described;
ultimately, it will allow all aspects of the
human-computer interface to be de-
scribed. The system allows developers
to define their own interface definition
tools.
Interface development tools: The dia-
logue is specified in a text file with a
text editor. An interactive design tool is
currently being developed for graphical
creation and manipulation of the inter-
face.
Dialogue developer role: The dialogue de-
veloper builds an interface using the
Open Dialogue interactive tools. This
developer must work in concert with the
application developer to agree on the
internal dialogue. Additionally, if new
interface components are needed, the
dialogue developer can create these
primitives (objects).

System development methodology: NO
specific system development methodol-
ogy is used, but use of Open Dialogue
facilitates iterative design and rapid
prototyping.
Rapid prototyping: Rapid prototyping is
an explicit step in the use of Open Dia-

h.

3.

a.

b.

C.

logue. A stub application is provided
with which an interface can be viewed
without writing any application code.
All dialogue described entirely within
the interface definition can be initiated
and tested. Any interaction that triggers
application intervention either through
a callback or return will note that such
an event was triggered.
Control structure: The encouraged
control structure is external or dialogue
dominant. Internal or computation
dominant control is also supported,
however.

Features of System

Internal representation of interface defi-
nitions

l At implementation time: Object work-
space (a collection of interaction ob-
jects that can be stored in a file or
loaded into memory).

l Atprototyping time: Object workspace.
l At run time: Object workspace.

Lexical constraints: The nature of the
current interaction primitives supplied
with Open Dialogue is such that there
are few lexical constraints that can be
violated by the end-user. For example,
character input can be validated either
a character at a time, when the end-user
finishes the input, or at some later time,
depending on the interface definition.
Some validation, such as that for nu-
meric input, can be performed by the
primitives (objects) provided with the
system. Other validation can be done by
the application or through primitives
added to the system by the application
developer.
Input dialogue: All inputs are validated
for lexical accuracy by the dialogue. Val-
idation can be done by the transformer
objects provided with Open Dialogue, by
the application, or by a new transformer
created as an extension to Open Dia-
logue. Transformers take one type of
data, such as string, as input and provide
a different type of data, such as integer,
as output.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 73

d.

e.

f.

g-

h.

i.

4.

a.

Output dialogue: All output is described
as objects, with the exception of output
to graphics areas. Objects are dynamic
in that anything that can be set up in
advanced through a dialogue description
file can also be done at run time.
Relationship between input and output
dialogue: Most objects can both contain
or display output as well as receive input
data, although objects are primarily ori-
ented one way or the other. Error mes-
sages, help, and prompts are all
instances of standard interaction prim-
itives.
Help: Help text can be associated with
any object in the interface. A standard
end-user action is defined for accessing
help for individual pieces of the inter-
face. Help text is displayed within a pop
UP*
Pragmatics: Currently pragmatic3 are
encapsulated within the X Window
System.
Multiple input devices: The current im-
plementation waits concurrently on
keyboard and mouse input; additional
input devices can be used as supported
by X. Support is planned to allow input
from any number of input sources. This
input would be processed in round robin,
run-to-completion fashion.
Support environment and graphics:
Open Dialogue is currently layered on
UNIX and Version 11 of the X Window
System. Open Dialogue has been ported
to Apollo workstations, SUN worksta-
tions, and Micro VAX workstations. Fu-
ture ports include IBM RT personal
computers. Open Dialogue is developed
to run on bit-mapped workstations run-
ning X. making extensive use of graph-
ics both for displaying the interface and
the application output. Icons, menus,
and other display and interaction tech-
niques are all graphically oriented.

Miscellaneous Questions

Human factors built in: No human fac-
tors principles are enforced by Open
Dialogue. Human factors principles can,
however, be enforced among applica-

b.

C.

d.

5.

;:

C.

d.
e.
f.

tions by use of templates in creating the
dialogue. A number of interfaces can use
the same set of templates to create a
consistent look and feel across those
interfaces.
Sequential versus asynchronous dia-
logue: In general the application invokes
an Open Dialogue routine to wait for
input. End-user interaction proceeds in
the interface until either a return to the
application is requested by the dialogue
or an application callback routine is
triggered. After a return is triggered
and the application has completed any
processing, the application can return
control to Open Dialogue by invoking
the event wait routine. At the comple-
tion of a callback routine, control is
returned to Open Dialogue as well. Open
Dialogue cannot produce dialogue that
is other than sequential at this time.
Future work is planned to address this
limitation.
Generality of interaction style: Inter-
action techniques provided with Open
Dialogue support menu and forms-
oriented interfaces. Extensions, how-
ever, could be implemented to handle
any desired interaction style. These in-
teraction styles could be mixed and
matched as desired.
Interface evaluation: No mechanisms
are built into Open Dialogue for dialogue
evaluation. The fact that an interface
can be brought up and used with no
application code, however, encourages
rapid prototyping and early evaluation
of proposed interfaces.

Implementation

Languages: C++.
Operating system: UNIX bsd4.2.
Date work begun: 1986, with much of the
design work leveraged from Domain/
Dialogue started in 1984.
Status: Commercial product.
Personnel: Five computer engineers.
Self-creating: Theoretically, the Inter-
active Design Tool could be used to cre-
ate itself; however, work has not
progressed to that stage yet.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

74 l H. R. Hartson and D. Hix

RAPID/USE

1. General Description of System

RAPID/USE [Wasserman 1985; Wasser-
man and Shewmake 19851, developed at the
University of California at San Francisco
by Anthony I. Wasserman and David
Shewmake, is designed to provide auto-
mated support for the User Software En-
gineering (USE) methodology. The USE
methodology advocates independent design
of the end-user interface(s) to an interac-
tive system, along with end-user partici-
pation in early stages of the develop-
ment process, largely through the ability
to use and evaluate prototypes of the
end-user interface to the developing
system. RAPID/USE executes a transition-
diagram-based representation of an
interactive system. In the transition dia-
grams, nodes represent messages to be dis-
played; arcs represent transitions, which
may be caused by end-user input or other
events; and small boxes represent actions
associated with the application. The exe-
cutable formalism of the state transition
diagrams is a very powerful way to repre-
sent and execute interactive systems.

With no actions implemented or linked,
RAPID/USE can be used simply to “exe-
cute” the transition diagrams and to pro-
vide an executable prototype of the
end-user interface. Actions may be linked
into the system incrementally, thereby
making it possible to evolve the resulting
program from a mockup of the interface to
a complete system. Actions may be written
in commonly used programming languages
(C, Pascal, FORTRAN 77), or in the data
manipulation language for the Troll/USE
relational database management system.

The front-end to RAPID/USE is a
graphical editor (Transition Diagram Edi-
tor) that generates RAPID/USE code.
When using the TDE, the developer is
given the impression of a two-dimensional
programming language. During execution
of the RAPID/USE program, it is possible
to animate the transition diagrams as a way
to trace execution. RAPID/USE also con-
tains logging mechanisms that can be used
to replay or evaluate a session.

RAPID/USE makes no assumptions
about interface style and simply gives the

ACM Computing Surveys, Vol. 21, No. 1, March 1989

dialogue developer access to low-level con-
trol over the alphanumeric display. Higher
level programs, such as a direct manipula-
tion forms editor, are then built on top of
RAPID/USE; that is, they generate a
RAPID/USE program. A product based on
RAPID/USE is now commercially avail-
able from Interactive Development Envi-
ronments, Inc.

2.

a.

b.
C.

d.

e.

f.

g.

h.

3.

a.

Interface Management Concepts

Dialogue independence: Done through
the use of a separate dialogue descrip-
tion file.
Structural model of interface: None.
Representation of interface: State tran-
sition diagram network is used, with
variables and control mechanisms added
to the basic transition network idea to
extend it to describe human-computer
interaction.
Interface development tools: These in-
clude a graphical Transition Diagram
Editor (TDE), text editor for end-users
without TDE, and form layout program
for the specific case of database entry
and retrieval.
Dialogue developer role: Not explicitly
included, but RAPID/USE could be
used with a method that supports a dia-
logue developer.
System development methodology: Ex-
plicitly supports the User Software
Engineering (USE) methodology as an
approach to system development.
Rapid prototyping: Dialogue represen-
tation, with transition diagrams or the
RAPID/USE language, is directly exe-
cutable. Prototyping is explicitly a step
in the User Software Engineering meth-
odology.
Control structure: Transition diagrams
provide the control structure, which is
inherently dialogue dominant.

Features of System

Internal representation of interface defi-
nitions
l At implementation time: Tables.
l At prototyping time: Tables.
l At run time: Tables.

Human-Computer Interface Development l 75

b.

C.

a.

e.

f .

g-

h.

i.

4.

a.
b.

c.

Lexical constraints: Character or token
handling is equally available.
Input dialogue: Dialogue representation
allows checking of “types,” such as nu-
merical or character, plus range and
length limits; other checks may be made
through programmed actions.
Output dialogue: Dialogue representa-
tion includes variables, which may be
passed to programmed actions; values
may be communicated in both directions
at run time.
Relationship between input and output
dialogue: Output is associated with
nodes and input is associated with tran-
sitions on arcs between nodes. Error
messages, prompts, and help informa-
tion are always treated as output where
the preceding input has caused a tran-
sition to such a state (node).
Help: All dialogue is handled consist-
ently; no special facilities are provided
in the tool for help.
Pragmatics: Currently works only with
a keyboard with possible time-outs. Cur-
rent research focuses on handling direct
manipulation.
Multiple input devices: Current research
is modeling “loosely connected” dia-
logue processes represented as a set of
transition diagrams.
Support environment and graphics:
UNIX and SUN workstation or similar
workstation (eventually). Graphics may
be achieved through use of programmed
actions that involve graphical routines
but is not the focus of the current sys-
tem. Current research is addressing
highly interactive systems that include
multiple windows and graphics.

Miscellaneous Questions

Human factors built in: No.
Sequential versus asynchronous dia-
logue: Sequential dialogue is possible;
also an action can invoke a background
process that can produce output, allow-
ing some asynchronous interfaces.
Generality of interaction style: General
alphanumeric display.

d.

e.
f.

Interface evaluation: Logging in two
forms: a raw keystroke file, and a tran-
sition log, with transition, input, output,
action (if any), and time stamp for each
state transition. An auxiliary tool, rap-
sum, summarizes the transition log.
This tool provides information that can
be used to evaluate interfaces built with
the tool.

Implementation

Languages: C.
Operating system: UNIX.
Date work begun: 1979.
Status: Research and, recently, commer-
cial product.
Personnel: Three computer scientists.
Self-creating: No.

Rapid Intelligent Prototyping Laboratory
(RIPL)

1. General Description of System

The Rapid Intelligent Prototyping Labo-
ratory (RIPL) [Flanagan et al. 19851,
developed at Computer Technology ASSO-
ciates in Englewood, Colorado, is a hard-
ware and software suite that supports

prototypes that are realistic facades of com-
plex computer systems. In an RIPL proto-
type, the external aspects of the interface
appear realistically, but internal workings
are an entirely different matter. The pro-
totpye interface software is more complex
than the eventual “real” system. This is
necessary to allow measurement and eval-
uation of the interface. RIPL is an evolving
product that eventually will support the
entire system interface development life
cycle. The life cycle as viewed by RIPL
covers requirement definition, prototype
generation, and building interfaces with
standardized end-user interaction.

The initial RIPL does not include direct
connection to a requirements definition ca-
pability or provide an ability to generate
code; it supports the end-user application
software development by providing screen
and dialogue definitions in a structured
form. RIPL initial interface design exper-
tise is acquired from the guidelines com-
piled by Smith and Mosier [1986] and is

ACM Computing Surveys, Vol. 21, No. 1, March 1989

76 l H. R. Hartson and D. Hix

limited to the areas of display format, dia-
logue type selection, and physical input de-
vice selection.

RIPL has five major components. The
“Executive” software set up all necessary
file and library access and performs house-
keeping functions of deleting, renaming,
and backing up data. The “Prototype Build
Subsystem” allows a dialogue developer to
define and arrange end-user activity screen
areas-referred to in RIPL as “tiles’‘-and
to define everything necessary for prototyp-
ing. The “Simulation Subsystem” links def-
initions with end-user routines and
libraries and then performs interface sim-
ulations. The “User Advisory Subsystem”
consists of two expert systems, both oper-
ating from a consolidated knowledge base.
The “Consultation Expert” provides gen-
eral advice and guidance to the dialogue
developer. The “Evaluation Expert” calcu-
lates design metrics and evaluates the pro-
totype. The “Technical Librarian” software
implements an electronic book metaphor
for design guidelines and manuals. The ini-
tial RIPL is a single end-user workstation
built on the Digital Equipment Corporation
VAXstation.

2. Interface Management Concepts

a. Dialogue independence: Computation is
treated as a response to dialogue stimuli.

b. Structural model of interface: Stimulus-
response network. Stimuli are specified
as Boolean combinations of end-user in-
puts (strings and picks) and system
events (timers and tiles becoming active
or inactive). Responses are changes to
the tile set.

c. Representation of interface: Represen-
tation is interactive; a stimulus-response
network is built with a direct manipu-
lation interface. A developer can specify
the tile interactions in a breadth or
depth first manner. A “TBD” (To Be
Defined) capability provides stubs for
yet unspecified responses. The devel-
oper designates a stimulus by either
doing it or describing it.

d. Interface development tools: Direct ma-
nipulation tools; manipulations are
made to the real interface, not a descrip-
tion of the interface.

e. Dialogue developer role: Yes; it uses the
direct manipulation interface and inter-
acts with consultation and evaluation
expert systems to analyze and redefine
the dialogue.

f. System development methodology: At
this point none is favored; the intention
is for RIPL to support traditional de-
velopment methodologies, not replace
them. In the near future RIPL will be
integrated with a Task Description Lan-
guage (TDL) tool developed in-house.
TDL is a formal grammar akin to PDL
for software. TDL specifies system end-
user tasks in a system, independent of
whether or not the task is automated.

g. Rapid prototyping: Primarily a rapid
prototyping system; future extensions
will allow closer integration with system
development methodologies and produc-
tion of structures or code.

h. Control structure: Control structure is
event based. Stimuli can be either dia-
logue oriented (e.g., end-user action) or
system oriented (fixed duration timers
or asynchronous zero duration timers
started by application software).

3. Features of System

a. Internal representation of interface defi-
nitions
l At implementation time: Tables and

end-user-defined code modules.
l At prototyping time: Tables and end-

user-defined code modules.
l At run time: “To Be Defined” (see 2c

above).
b. Lexical constraints: Keystrokes, strings,

and pick locations are captured as stim-
uli and compared against internal tables
to see which tiles are “interested.” Lim-
ited ability to define such stimuli as any
keystroke, a specific key, or any numeric
keystroke is provided. There are no
errors, as such, only stimuli that are
not of interest to the prototype. These
unused stimuli are captured for later
analysis.

c. Input dialogue: Focus is on interaction
mechanisms, and is less concerned in
the initial version with the validity of
inputs. Errors and error handling are

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 77

d.

e.

f.

g*

h.

i.

defined as stimuli and responses by the
developer. Error-handling features such
as ranges of valid input or list validation
are not currently provided.
Output dialogue: Output displays are de-
fined either a priori or generated by
designer code within RIPL guidelines. A
priori definitions provide templates with
optional list items to use in the template
positions or provide multiple instances
of the same type tile.
Relationship between input and output
dialogue: End-user inputs are stimuli;
changes to tile attributes and contents
are responses. Error messages or help
output are irrelevant to the dialogue def-
inition process; they are used to associ-
ate semantic meaning with tile areas for
dialogue evaluation.
Help: Not a special case; basic tools
are appropriate for developing help
dialogues.
Pragmatics: An environment definition
is used to represent details of target
devices the prototype will run on. The
evaluation expert takes this information
into account, if specified. Dialogue itself
is based on logical devices.
Multiple input devices: Supports multi-
ple input devices and multiple display
surfaces, and the environment can be
orchestrated as one integrated proto-
type.
Support environment and graphics: Dig-
ital Equipment Corporation MicroVMS
operating system; written in VAX Pas-
cal using GKS for display output., Ex-
pert systems are implemented in MIT’s
NIL Common LISP. Handles icon-
oriented direct manipulation as well as
menus and queries.

C.

d.

5.

a.

b.

:.

e.

4. Miscellaneous Questions f.

a. Human factors built in: It currently ad-
vises, using the consultation or the eval-

input-process-output is the approach.
Three different processors make this
possible: RIPL getting stimuli from an
end-user; RIPL modifying tiles as a re-
sponse; and an end-user-written routine
either doing application processing or
generating its own displays.
Generality of interaction style: Dialogues
for direct manipulation, menus, queries,
and form-driven interfaces can be cre-
ated. Currently there is no hardware
support for voice input/output, but it is
theoretically possible.
Interface evaluation: Handled by three
mechanisms:

Evaluation Expert System-Design
metrics calculated from tile attributes
and stimulus-response definitions.
Instruments-Start and stop timers
between stimuli and responses and
cursor trackers to monitor cursor
movements.
Capture/Playback-Postsimulation
evaluation done by replaying simula-
tion from a capture file at different
playback speeds.

Implementation

Language: VAX Pascal and MIT’s NIL
Command LISP.
Operating system: DEC MicroVMS with
VAXstation user interface system.
Date work begun: October 1984.
Status: Internal currently; commercial
in the future.
Personnel: Two computer scientists/
software engineers; two programmers;
one graphics specialist; one expert sys-
tems specialist; two human factors
experts.
Self-creating: Yes; RIPL can prototype
itself.

uation expert; it will eventually enforce SmethersBarnes Prototyper
environment specifications such as spe-
cific dialogue usages, error handling, and 1. General Description of System

shape encoding. Prototyper, developed and marketed by
b. Sequential versus asynchronous dia- SmethersBarnes in Portland, Oregon, is a

logue: There is no requirement that dia- tool for rapid design, prototyping, and test-
logue be strictly sequential; concurrent ing of interfaces specifically for Macintosh

ACM Computing Surveys, Vol. 21, No. 1. March 1989

78 l H. R. Hartson and D. Hix

applications [Prototyper 19871. Code gen-
eration adds the capability to create high-
level (Pascal) code and Macintosh resource
data structures, allowing stand-alone exe-
cution of interface prototypes. Since gen-
erated stand-alone prototypes contain a
skeletal event-oriented program structure,
they can be easily augmented to support
additional human factors testing of logic or
even to form the base of a final application.

Through Prototyper’s dynamic creation
of Macintosh data structures and its use of
the Macintosh Toolbox, applications pro-
duced using Prototyper are highly com-
pliant with accepted Macintosh interface
standards. Prototyper’s operational meta-
phors exploit widely used object-oriented
drawing concepts; combined with a strong
focus on graphic representation, this en-
ables Prototyper to be accessible to profes-
sional software engineers and end-users
alike.

The intention with Prototyper is to ease
the task of learning the intricacies of ap-
plication development on the Macintosh,
to provide a tool that complements the
developer’s existing tools and skills, and to
provide a smooth, intuitive tool for com-
munication among all involved persons,
whatever their contribution to the software
development process.

Prototyper focuses on menus and win-
dows, with a menu editor and a window
editor that include a palette of standard
interface objects. Immediate simulation of
the menu or window currently being con-
structed is always available, as is a global
simulation of the entire interface. Proto-
typer capitalizes on the reusability of Ma-
cintosh resource objects and can import
such objects from other applications, saving
redundant work. Design may proceed with-
out regard to computational complexities,
allowing nonprogrammers to express their
ideas without technical expertise. Gener-
ated code is highly commented and logically
structured, lending itself to extension.

2. Interface Management Concepts

a. Dialogue independence: Yes. The major-
ity of interface objects are implemented
as Macintosh resources, yielding in-
strinsic separation. Pascal units created

ACM Computing Surveys, Vol. 21, No. 1, March 1989

for each window/dialogue/alert will call
computational logic as necessary and
are therefore easily isolated.

b. Structural model of interface: None.
C. Representation of interface: Graphical,

object-oriented, direct manipulation
language produced using interactive
tools.

d. Interface development tools: Menu editor
with concurrent simulator, window/dia-
logue/alert worksheets with palette of
tools represented iconically. The dia-
logue developer creates interface objects
by selecting a tool, clicking and dragging
with mouse. A rapid context switching
facility allows simulation of current
window.

e. Dialogue developer role: Role is sup-
ported by direct manipulation tools; also
the roles of software engineer, graphic
designer, human factors specialist, test
subject, evaluator, analyst, managerial
staff, end-user, and student are sup-
ported.

f. System development methodology: No
specific methodology, but Prototyper as-
sists specification, design, implementa-
tion, testing, and maintenance phases of
software life cycle.

g* Rapid prototyping: The strong suit of
Prototyper, specific to the Macintosh
environment. No technical knowledge is
necessary to construct prototypes; par-
ticipation can be solicited from ail proj-
, ect members and clients.

h. Control structure: The event-driven ar-
chitecture of Macintosh applications is
followed. Menu initialization and hand-
ling of run-time inputs are isolated. Pas-
cal code is generated from the interface
design.

3. Features of System

a. Internal representation of interface defi-
nitions
l At implementation time: Internal state

tables and Macintosh resources.
l At prototyping time: Internal state ta-

bles and Macintosh resources.
l At run time: Executable code and

Macintosh resource objects.

b.

C.

d.

e.

f .

h.

1.

4.

a.

Human-Computer Interface Development l 79

Lexical constraints: Macintosh buttons,
icons, pictures, check boxes, radio but-
tons, and static and editable text objects
are supported; external logical behavior
must be code in computational routines.
Generated code handles graphical and
linking support of interface only.
Input dialogue: Input validation is per-
formed by computational components of
the prototype generated using Proto-
typer.
Output dialogue: Presentation of output
within application windows is the re-
sponsibility of the application program-
mer. Strong Macintosh conventions
govern presentation and end-user inter-
action with output. Prototyper supports
alerts, used for outputting error mes-
sages and end-user warnings, and win-
dow scroll bars allow end-user control
of displayed text.
Relationship between input and output
dialogue: No distinction is made in win-
dows, modal dialogues, or modeless dia-
logues. Alerts are generally output
features.
Help: Yes, there are tools that aid in
design and implementation of on-line
help for the end-user.
Pragmatics: Prototyper assumes bit-
mapped terminal, mouse, and custom-
izable interface characteristics of the
Macintosh environment.
Multiple input devices: Event-driven
Macintosh architecture handles inputs
from serial ports, data storage devices,
keyboard, mouse, and so on.
Support environment and graphics: Cur-
rently limited to Macintosh operating
system, with plans to expand to other
graphical microcomputer environments.
Graphics are central to the Macintosh
environment, and Prototyper develops
standard Macintosh interfaces.

Miscellaneous Questions

Human factors built in: Prototyper pro-
duces interfaces that embody those
principles intrinsically in Macintosh ar-
chitecture, specifically found in Apple
Computer Inc.‘s “Human Interface

b.

C.

d.

5.

it:

k

e.

f.

Guidelines.” It stresses, for example,
nonmodality, avoidance of sequential-
ity, and pull-down menus.
Sequential versus asynchronous dia-
logue: Asynchronous dialogue such as
that found in Macintosh application in-
terfaces is supported.
Generality of interaction style: Proto-
typer produces interfaces that are ori-
ented to Macintosh-specific interaction
styles and conventions.
Interface evaluation: No.

Implementation

Languages: Pascal.
Operations system: Macintosh.
Date work begun: 1986.
Status: Commercial product.
Personnel: Three computer scientists.
Self-creating: Yes, new versions are
being designed with the existing prod-
uct.

State Diagram Specification Interpreter

1. General Description of System

Research by Robert J. K. Jacob at the
Naval Research Lab began as an attempt
to develop and test a representation/speci-
fication technique for describing inter-
active end-user interfaces [Jacob 1983,
19851. The technique is based on state tran-
sition diagrams (STDs) with a set of special
features and extensions-a set kept inten-
tionally small in order to retain the prin-
cipal benefit of state diagram notation,
which is its conceptual simplicity. In the
course of testing and refining the specifi-
cation language, it was necessary to build
an interpreter that implements the behav-
ior given in a representation. Motivation
for the interpreter was to test and improve
the representation/specification language,
not the other way around.

State diagram specifications are executed
by an interpreter to provide a working
prototype of the specified system. The tech-
nique supports a decomposition of the end-
user interface description into semantic,
syntactic, and lexical components. A spe-
cific notation suitable for describing each

ACM Computing Surveys, Vol. 21, No. 1, March 1989

80 l H. R. Hartson and D. Hix

level to the interpreter in a separate
document is then provided. A process of
stepwise refinement of the syntactic rep-
resentation from an informal representa-
tion to a formal, executable one within the
same notation is also supported.

In addition to producing a token, a tran-
sition in a state diagram may call a seman-
tic action, a condition, or a nonterminal. A
nonterminal is defined in a separate dia-
gram, called a subroutine. Syntactic level
diagrams also introduce output tokens to
describe output syntax analogously to the
description of input syntax in terms of in-
put tokens. Since syntax is concerned with
the names and sequences of input tokens,
it is extended to include a description of
the names and sequences of output tokens
in the same state diagram notation. The
concept of a token for output is, by analogy
to input, a unit whose internal structure
has no meaning with respect to this
dialogue.

The research has produced a technique
for representing end-user interfaces based
on state diagrams; a design notation that
separates the end-user interface design and
specification itself into the semantic, syn-
tactic, and lexical levels; and an interpreter
that accepts such a specification, imple-
ments, and executes it. Several fairly large
systems have been built using this method
and interpreter. Current research focuses
on extending the technique to describe
direct manipulation or coroutine-based
interfaces.

2.

a.

b.
C.

d.

Interface Management Concepts

Dialogue independence: Separate repre-
sentation or code for semantics and
syntax.
Structural model of interface: None.
Representation of interface: State tran-
sition diagrams.
Interface development tools: A graphical
STD editor allows “on the fly” changes
to diagrams as they are executed. Pro-
grams exist to draw STDs from text
descriptions, pretty print text descrip-
tions, and parse and translate (to LISP)
the text form.

e.

f.

h.

3.

a.

b.

C.

d.

Dialogue developer role: Writes the STD;
does not write the semantic routines,
which are given to a programmer.
System development methodology: No
specific software engineering methodol-
ogy is used, but semantic/syntactic/lex-
ical levels are separated throughout
the design process, specification, and
implementation. Stepwise refinement of
representation/specification from early
form to final form is supported, and
early steps can be executed just as final
steps.
Rapid prototyping: A prototype runs di-
rectly from the specification. Missing
diagrams and actions can be stubbed
automatically to obtain a prototype
from an incomplete early version of the
specification.
Control structure: Dialogue dominant,
calling semantic actions like subrou-
tines.

Features of System

Internal representation of interface defi-
nitions
l At implementation time: (UNIX) text

file describing STDs.
l At prototyping time: (UNIX) text file

describing STDs.
l At run time: Internal tables contain-

ing parsed version of text file data.
Lexical constraints: Syntactic or lexical
constraints are handled directly in the
STD. Semantic constraints (e.g., name
completion with respect to only those
files that are readable by some end-user)
are handled by calling a semantic action
subroutine to check and return to a Boo-
lean value, which is then used in tra-
versing the STD.
Input dialogue: Format and timing of
input events are controlled by the STD;
contents are stored for use by semantic
actions. Some input validation is done
in the STD and some in the semantic
subroutines.
Output dialogue: Output token contents
are set by semantic actions, but format
and timing of the token are controlled
by the STD.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

e.

f.

h.

i.

4.

;:

C.

d.

Human-Computer Interface Development l 81

Relationship between input and output
dialogue: All input or output consists of
tokens. Input tokens and output tokens
are treated as nearly symmetrically as
possible; the two are distinguished by a
naming convention in the specification.
Help: Not specifically; a dialogue devel-
oper can design help features as part of
the STD, as has been done in all the
systems built using this technique.
Pragmatics: Hidden entirely from dia-
logue representation, except at the
lexical level, where they can be pro-
grammed as needed. Currently there is
no specific help for programming the
lexical level.
Multiple input devices: Yes, in principle.
Transitions leading from a state may
involve inputs from different streams,
and whichever occurs first causes its
transition. The current version of the
lexical analyzer does not handle this; it
can be changed.
Support environment and graphics:
UNIX, written in C. Also an experimen-
tal version in Franz LISP on UNIX, and
coming soon in Symbolics LISP on
Symbolics. All dialogues, including
graphical ones, are centered around se-
quences of tokens. Tokens could, for
example, put colored boxes in positions
on a graphic display instead of text on
the terminal. The technique has been
used to produce a graphical interface.

Miscellaneous Questions

Human factors built in: No.
Sequential versus asynchronous dia-
logue: Current research is focused on
extending the STD approach to cover
concurrent, asynchronous dialogues
more completely.
Generality of interaction style: Based on
sequences of input and output tokens;
tokens internally can do anything.
Interface evaluation: This is supported
only to the extent that putting the end-
user interface into STD notation clari-
fies its behavior and helps one apply
performance models. Any rapid proto-
typing tool is useful for doing empiri-

5.

Fit:

1.
e.
f.

cal evaluations of end-user interface
designs.

Implementation

Languages: C.
Operating system: UNIX.
Date work begun: 1981.
Status: Experimental.
Personnel: One computer scientist.
Self-creating: Probably.

Toolkit UIMS

1. General Description of System

The UIMS-formerly called TIGER-de-
veloped at Boeing Computer Services
[Kasik 19821 by David J. Kasik, Henry W.
Ramsey, and J. Randy Houser is part of a
larger toolkit for the development of highly
interactive graphics-based applications
[Kasik 19851. The toolkit is intended to
isolate applications from operating sys-
tems, computing hardware, graphics hard-
ware, and database management systems.

The toolkit UIMS strictly separates dia-
logue components from the application by
formatting all dialogue sequences for dis-
play, managing all end-user defaults within
and across sessions, accepting all end-user
inputs, and handling operating system ex-
ceptions. Its goal is to keep the interactive
syntactic aspects of an application con-
sistent for both end-users and application
programmers and thus improve the produc-
tivity of each.

The toolkit UIMS incorporates extensive
end-user productivity aids. Default track-
ing is a compromise that combines ease-of-
use characteristics of a menu-based system
with the speed of parameter omission
available in a command-based system. By
preserving defaults for every dialogue se-
quence, the end-user must only change a
limited amount of information while still
seeing all legal options. An end-user can
invoke other functions (e.g., view manipu-
lation) without losing information already
entered in another function. Another mode
allows free traversal (i.e., no explicit reject
sequence is needed to quit) when the end-
user wishes to quit in midfunction. Illogical

ACM Computing Surveys, Vol. 21, No. 1, March 1989

82 . H. R. Hartson and D. Hix

or illegal choices can be disabled automat-
ically to help prevent the end-user from
making errors.

Physical interaction with the system is
consistent across all applications and can
present information in a number of ways.
Two-dimensional windows present an over-
lapped text window containing large
amounts of alphanumeric information.
Panels give a “graphical forms mode” nor-
mally reserved for strictly alphanumeric
terminals. A command macro language is
provided for all applications to extend their
functionality by combination. Pseudocon-
struction allows an end-user to build data
temporarily to aid in complex construction
tasks.

Programmer productivity aids are pro-
vided for both the dialogue representation
and run-time stages of application devel-
opment. A programming language called
ET (Extended TICCL) has been desgined
as an extension of Pascal. ET contains new
declaration and control structures that al-
low a programmer to construct a seemingly
linear dialogue sequence. The ET compiler
produces a Pascal procedure representing a
state machine that is traversed by the run-
time UIMS interpreter. The interpreter
takes on the burden of dialogue formatting,
default management (including heuristics
to look ahead in the dialogue sequence),
syntax checks on alphanumeric entry, pick
queuing and feedback, and interactive
device control. In this way, much of the
bookkeeping associated with a complex in-
teractive application is removed from the
domain of application programming.

The toolkit UIMS is currently being used
in a wide variety of applications, including
three-dimensional geometry construction
and manipulation for points, curves,
surfaces, and volumes; finite element mod-
eling; drafting and documentation; hierar-
chical design charts; space station analysis;
oil well log history analysis; and interactive
panel design. Overall experience with the
toolkit UIMS as an interactive application
development approach has been excellent
in terms of quality of dialogue, amount of
interactive application functions that can
be effectively produced, extensibility, and
portability.

2.

a.

b.
C.

d.

e.

f.

h.

Interface Management Concepts

Dialogue independence: A dialogue pro-
grammer represents dialogue in an in-
dependent language that is precompiled
and traversed by a run-time interpreter.
Structural model of interface: None.
Representation of interface: Dialogue is
characterized as a hierarchy with free
traversal. A dialogue programmer uses a
dialogue programming language that ex-
tends Pascal specification and declara-
tive structures while keeping Pascal
control structures.
Interface development tools: System text
editor is used to produce dialogue pro-
gramming language code.
Dialogue developer rule: No, dialogue is
programmed.
System development methodology: Func-
tional decomposition via an internally
developed method called Prime/Com-
mon hierarchies. PCMAN is an appli-
cation written with the toolkit UIMS
for constructing other applications. Dia-
logue is written before application code
is written.
Rapid prototyping: Dialogue can be ex-
ercised with application code stubbed
out.
Control structure: Strictly adheres to
dialogue dominant or external architec-
ture.

3. Features of System

a. Internal representation of interface defi-
nitions

l At implementation time: Executable
code representing state tables.

l At prototyping time: Executable code
representing state tables.

l At run time: Executable code repre-
senting state tables.

b. Lexical constraints: The system vali-
dates end-user keystrokes under appli-
cation-specified constraints, prevents
erroneous picking, queues input when
requested, and provides multiple feed-
back styles.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 83

C.

a.

e.

f.

g.

h.

1.

4.

;:

C.

d.

5.

a.
b.

1
e.

Input dialogue: Input validation is pro-
grammed.
Output dialogue: Output dialogue is pro-
grammed.
Relationship between input and output
dialogue: Output dialogue is controlled
by the application program. Services are
provided for application error messages
and help displays.
Help: Help is keyed to dialogue frag-
ments and can be accessed at any time.
Pragmatics: Operates with logical de-
vices.
Multiple input devices: All devices can
be active simultaneously. The toolkit
UIMS uses an interrupt driver and reads
the input to determine the proper de-
fault path without application interven-
tion.
Support environment and graphics: Op-
erating system independent, but runs on
VM/CMS, MS/DOS, and UNIX. Cur-
rent application dialogue is textual. A
forms mode provides convenient for-
matting for complex text mode entities.

Miscellaneous Questions

Human factors built in: No.
Sequential versus asynchronous dia-
logue: Current implementation allows
only sequential dialogues; future re-
search will include capabilities for asyn-
chronous dialogue.
Generality of interaction style: Primarily
menu based; an alternate command lan-
guage interface (transparent to the ap-
plication) is available.
Interface evaluation: Keystroke capture
is possible.

Implementation

Languages: Pascal.
Operating system: IBM VM/CMS,
MS/DOS, UNIX System V.
Date work begun: 1980.
Status: Internal product.
Personnel: Two computer scientists in
design/implementation of UIMS; ten

others in use of toolkit UIMS for appli-
cation development.

f. Self-creating: No.

University of Alberta UIMS

1. General Description of System

The University of Alberta UIMS [Green
19851 is an experimental UIMS with three
goals:

l To evaluate the Seeheim model of hu-
man-computer interfaces.

l To provide a test bed for new ideas in
human-computer interfaces and UIMS.

l To provide a useful tool for development
of human-computer interfaces.

The Seeheim model divides a human-
computer interface into three main com-
ponents: the presentation component, the
dialogue control component, and the appli-
cation interface model. The “presentation
component” can be viewed as the lexical
level of the interface, responsible for device
level interactions. The “dialogue control
component” manages dialogue between the
human and the computer system. The
“application interface model” forms the
interface between the human-computer in-
terface and the other parts of the applica-
tion. The University of Alberta UIMS
provides a collection of tools that can be
used to design these three components.
These tools can be used to describe screen
layout, device assignments, dialogue struc-
ture, and interaction with the application
program. The result of the design part of
the UIMS is a detailed representation of
the human-computer interface.

One of the main design goals is to give
the human-computer dialogue developer as
much freedom as possible. One way in
which this has been done is to provide
multiple tools for each of the three com-
ponents. If the developer does not like one
of the tools, the developer can switch to
another of the tools. The UIMS has a num-
ber of well-defined ways in which the de-
veloper can modify it in order to fit the
developer’s personal design style and can
easily add new interaction and display tech-
niques from existing libraries. These new

ACM Computing Surveys, Vol. 21, No. 1, March 1989

a4 l H. R. Hartson and D. Hix

techniques have the same status as system-
supplied ones. The developer can also save
commonly used parts of dialogues in a li- h.
brary. Another important feature of this
UIMS is a concentration on interactive
graphical techniques and direct manipula-
tion in the design tools to increase produc-
tivity of the developers. 3.

2.

a.

b.
C.

d.

a.
Interface Management Concepts

Dialogue independence: The human-
computer interface and other parts of
the application are viewed as separate
processes, although they need not be
implemented this way. As much as pos-
sible, the interface can be designed in-
dependently of other parts of the b
program.
Structural model of interface: None.
Representation of interface: Dialogue c.
representation is based on events and
event handlers. Events are similar to
messages and can be generated by the
end-user, the application program, or
other event handlers. Event handlers
are processes capable of processing
events. There can be many concurrently
executing event handlers, and the set of

d.

event handlers can change over time.
Most common dialogue notations, such
as transition networks, RTNs, ATNs,
and grammars can be translated into
event handlers.
Interface development tools: Two inter-
face development tools exist. One is a
high-level programming language based
on event handlers. The other is a graph-

e.

ical recursive transition network (RTN)
editor. Both tools produce a common
representation for the dialogue. New in-
terface development tools can easily be
added to the UIMS as long as they pro-
duce this common representation as
their output.
Dialogue developer role: Supported by
interface development tools.
System development methodology: None;
UIMS is an implementation tool. f.
Rapid prototyping: Most parts of the
human-computer interface can be tried
as they are designed; a completed appli-

cation is not required to test the inter-
face.
Control structure: An event-based con-
trol structure is under control of the
dialogue developer and application pro-
grammer.

Features of System

Internal representation of interface defi-
nitions
l At implementation time: Database and

executable code.
l At prototyping time: Database and ex-

ecutable code.
l At run time: Database and executable

code.
Lexical constraints: Handled by individ-
ual interaction techniques in a manner
appropriate for that technique.
Input dialogue: Depending upon the type
of validation, it is performed by the in-
teraction technique, in the dialogue con-
trol component, or just before it is sent
to the application. The application
(computation) does not need to validate
input.
Output dialogue: Most output from the
UIMS is generated by display tech-
niques, which are implemented as pro-
cedures in the underlying programming
language. When information is dis-
played, the display technique extracts
relevant data from the information that
has been passed to the human-computer
interface.
Relationship between input and output
dialogue: There is essentially no distinc-
tion between input and output dialogue.
Other parts of the application are
viewed as an input device by the human-
computer interface. Thus, all interface
development tools can be used to inter-
pret messages from the application. All
prompts, help information, and most er-
ror messages are handled inside the hu-
man-computer interface; they are not
the concern of the application.
Help: No special facilities for help exist;
a dialogue developer can provide help
through presentation and dialogue con-
trol component tools.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 85

g.

h.

1.

4.

a.

b.

C.

d.

5.

;:

Ii.

;:

Pragmatics: Handled somewhat through
the presentation component.
Multiple input devices: UIMS is based
on the concept of concurrent processes;
therefore, there can be any number of
active dialogues or devices. The under-
lying run-time system is responsible for
process switching and ensuring that
each device and dialogue gets its share
of processor time.
Support environment and graphics:
Runs under the UNIX operating sys-
tem but is relatively independent. All
input and output is through a device-
independent window manager. Most
human-computer interfaces produced
by this UIMS make extensive use of
graphics. Its main application areas are
computer-aided design and computer
animation.

Miscellaneous Questions

Human factors built in: Tools do not
enforce any human factors principles;
human factors of the design are left to
the dialogue developer.
Sequential versus asynchronous dia-
logue: Dialogue structure is completely
under control of the dialogue developer.
Any dialogue that can be programmed
can, in theory, be implemented using
the dialogue development tools.
Generality of interaction style: Can sup-
port a wide range of interaction styles;
tools can be customized to generate in-
terfaces with any particular interaction
style. Most of this adaptation is accom-
plished through libraries of interaction
and display techniques.
Interface evalaution: No.

Implementation

Languages: C.
Operating system: UNIX.
Date work begun: April 1984.
Status: Experimental.
Personnel: Five computer scientists.
Self-creating: Yes.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions
to the DMS research mentioned in this survey by
other members of our research team, especially our
friend, colleague, and fellow traveler, Dr. Roger W.
Ehrich. We also express appreciation to Dr. Marilyn
Mantei for her careful reading of portions of the
manuscript, her many suggestions for improvement,
and her inspired Indian cookery. We wish to acknowl-
edge the patience and assistance of Dr. Tony Wasser-
man, during his tenure as editor, whose knowledge of
the field and numerous constructive suggestions
helped us organize this paper. Thanks to Eric Smith
and Antonio Siochi for providing thoughtful com-
ments on some sections and to all who completed our
lengthy questionnaire for the appendix. Thanks to
Caroline Danby Woody for her cheerful typing of
uncountably infinite versions of our scribbles. Pat
Cooper, Sheila Casey, and Carole Shepherd also
helped with typing along the way. And Jo-Anne Lee
Bogner had the enviable task of typing the final ver-
sion. Somehow we all lived through it!

Our DMS work is funded by the Software Produc-
tivity Consortium, and the Virginia Center for Inno-
vative Technology. It has also been supported by the
National Science Foundation, Dr. H. E. Bamford, Jr.,
Program Director, NSF Information Technology Pro-
gram; as well as by IBM Federal Systems Division.
Earlier support was given by the Office of Naval
Research, Engineering Psychology Group.

REFERENCES

ACM CHI ‘83 Conference on Human Factors in Com-
puting Systems. 1983. (Boston, Mass., Dec.).
ACM, New York.

ACM CHI ‘85 Conference on Human Factors in Com-
puting Systems. 1985. (San Francisco, Calif.,
Apr.). ACM, New York.

ACM CHI ‘86 Conference on Human Factors in Com-
puting Systems. 1986. (Boston, Mass., Apr.).
ACM, New York.

ACM CHI ‘87 + GZ Conference on Human Factors in
Computing Systems. 1987. (Toronto, Ontario,
Canada, Apr.). ACM, New York.

ACM CHI ‘88 Conference on Human Factors in Com-
puting Systems. 1988. (Washington, D.C., May).
ACM, New York.

ACM Computing Surveys 1981. Special Issue: The
Psychology of Human-Computer Interaction,
vol. 13, 1 (Mar.).

ACM SIGGRAPH Workshop on Software TOOLS for
User Interface Management. .1986. (Seattle,
Wash.. Nov.). ACM. New York. In Commuter
Graphics 21, i (Apr.),’ 71-147.

ACM SIGGRAPH Symposium on User Interface Soft-
ware. 1988. (Banff, Alberta, Canada, Oct.).
ACM, New York.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

86 l H. R. Hartson and D. Hix

ACM SIGSOC Conference on Easier and More Pro-
ductive Use of Computing Systems. 1986. (Ann
Arbor, Mich., May). ACM, New York.

ALAVI, M. 1984. An assessment of the prototyping
approach to information systems development.
Commun. ACM 27, 6 (June), 556-563.

APPLE COMPUTER, INC. 1985. Inside Macintosh, vol.
II. Addison-Wesley, Reading, Mass.

BASS, L. J., AND BUNKER, R. E. 1981. A generalized
user interface for applications programs. Com-
mun. ACM 24, 12 (Dec.), 796-800.

BENBASAT, I., AND WAND, I. 1984. A structured ap-
proach to designing human-computer dialogues.
Int. J. Man-Mach. Stud. 21, 1055126.

BENNETT, J. 1984. Managing to meet usability re-
quirements. In Visual Display Terminals: Usabil-
ity Issues and Health Concerns, J. Bennett, D.
Case, J. Sandelin, and M. Smith, Eds., Prentice-
Hall, Englewood Cliffs, N.J.

BLACK, J. L. 1977. A general purpose dialogue pro-
cessor. In Proceedings of the National Computer
Conference. ACM, New York, pp. 397-408.

BLESER, T. P. 1981. A formal language for describing
and evaluating the ergonomics of user-computer
interfaces. ACM DC Chapter 20th Symposium
(College Park, Md., June). ACM, New York.

BLESER, T. P., AND FOLEY, J. D. 1982. Towards
specifying and evaluating the human factors of
user-computer interfaces. In Proceedings of the
Conference on Human Factors in Computer Sys-
tems (Gaithersburg, Md., Mar.). ACM, New York,
pp. 309-314.

BOCKER, H.-D., FISCHER, G., AND NIEPER, H.
1986. The enhancement of understanding
through visual representations. In Proceedings of
the ACM CHI’86 Conference on Human Factors
in Computing Systems (Boston, Mass., Apr.).
ACM, New York, pp. 44-50.

BOEHM, B. W. 1983. Seven basic principles of soft-
ware engineering. J. Syst. Softw. 3, 3-24.

BOEHM, B. W., GRAY, T. E., AND SEEWALDT, T.
1984. Prototyping vs. specification: A multi-
project experiment. In Proceedings of the 7th Zn-
ternational Conference on Software Engineering.
ACM, IEEE, New York, pp. 473-484.

BORUFKA, H. G., AND PFAFF, G. 1981. The design
of a general-purpose command interpreter for a
graphical man-machine communication. In Man-
Machine Communication in CAD/CAM, T. Sata
and E. Warman, Eds. North-Holland Publ.,
Amsterdam.

BORUFKA, H. G., TEN HAGEN, P. J. W., KUHLMANN,
H. W., AND WEBER, H. R. 1981. On defining
interactions by dialogue cells. Tech. Rep. GRIS
81-7, FG Graphische Interaktive Systeme Tech-
nische Hochschule Darmstadt.

BORUFKA, H. G., KUHLMANN, H. W., AND TEN
HAGEN, P. J. W. 1982. Dialogue cells: A method
for defining interactions. IEEE Comput. Graph.
A&. (July), 25-33.

Bricklin’s Demo Program. 1987. Software Garden,
Inc., P.O. Box 373, Newton Highlands, Mass.
02161.

BRITTS, S. 1987. Dialog management in interactive
systems: A comparative survey. ACM SZGCHI
Bull. 18, 3 (Jan.), 30-42.

BROWN, M. D. 1985. Understanding PHIGS. Mega-
tek Corp., San Diego, Calif.

BROWNE, D. P., SHARRATT, B. D., AND NORMAN, M.
A. 1986. The formal specification of adaptive
user interfaces using command language gram-
mar. In Proceedings of the ACM CH1’86 Con-
ference on Human Factors in Computing
Systems (Boston, Mass., Apr.). ACM, New York,
pp. 256-260.

BUXTON, W. A. 1983. Lexical- and pragmatic con-
siderations of input structures. Comput. Graph.
17, 1, 31-37.

BUXTON, W. A., LAMB, M. R., SHERMAN, D., AND
SMITH, K. C. 1983. Towards a comprehensive
user interface management system. Comput.
Graph. 27, 3, 35-42.

CANNING, R. G., ED. 1983. Replacing old applica-
tions. EDP Anal. 21, 3 (Mar.), 1-16.

CARD, S. K., MORAN, T. P., AND NEWELL, A.
1983. The Psychology of Human-Computer
Interaction. Lawrence Erlbaum Assoc., Hillsdale,
N.J.

CAREY, T. T., AND MASON, R. E. A. 1983.
Information systems prototyping: Techniques,
tools and methodology. Can. J. Oper. Res. Znf.
Process.

CARROLL, J. M., AND ROSSON, M. B. 1985. Usability
specifications as a tool in interactive develop-
ment. In Advances in Human-Computer Znter-
action, vol. 1. H. Rex Hartson, Ed. Ablex,
Norwood, N.J., pp. l-28.

CASEY, B. E., AND DASARATHY, B. 1982. Modelling
and validating the man-machine interface. Softw.
Pratt. Exper. 12, 557-569.

CHAPANIS, A. 1982. Man-computer research at
Johns Hopkins. In Information Technology and
Psychology: Prospects for the Future. Praeger,
New York.

CHERITON, D. R. 1976. Man-machine interface de-
sign for timesharing systems. In Proceedings of
the ACM Annual Conference. ACM, New York,
pp. 362-380.

CLARK, I. A. 1981. Software simulation as a tool
for usable product design. IBM Syst. J. 20, 3,
272-293.

Communcations of the ACM 1983. Special Issue:
Working Toward Successful Human-Computer
Interface 26, 4 (Apr.).

CONWAY, M. E. 1963. Design of a separable transi-
tion-diagram compiler. Commun. ACM 6, 7.

COOMBS, M. J., AND ALTY, J. L., EDS.
1981. Computing Skills and the User Interface.
Academic Press, Orlando, Fla.

COUTAZ, J. 1985. Abstractions for user interface de-
sign. IEEE Computer, 18 (Sept.), 21-34.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 87

Cox, B. J. 1986. Object Oriented Programming:
An Evolutionary Approach. Addison-Wesley,
Reading, Mass.

Data General’s PRESENT Information Presentation
Facility User’s Manual. 1982. Data General Cor-
poration Document 083-000168 (Apr.).

DEC’s VAX11 Form Management System. 1984.
Digital Equipment Corporation Document SPD
AE-R440C-TE (Jan.).

DENERT, E. 1977. Specifications and design of dia-
logue systems with state diagrams. In Interactive
Computing Symposium. North-Holland Publ.,
Amsterdam.

DIEDERICH, J., AND MILTON, J. 1987. Experimental
prototyping in Smalltalk. IEEE Software 20
(May), 50-64.

DRAPER, S. W., AND NORMAN, D. A. 1985. Software
engineering for user interfaces. IEEE Trans.
Softw. Eng. SE-II, 252-258.

DWYER, B. 1981. A user-friendly algorithm. Com-
mun. ACM 24, 9 (Sept.), 556-561.

EDMONDS, E. A. 1981. Adaptive man-computer in-
terfaces. In Computing Skills and the User Znter-
face, M. J. Coombs and J. L. Alty, Eds. Academic
Press, London.

EDMONDS, E. A. 1982. The man-computer interface:
A note on concepts and design. Znt. J. Man-Mach.
Stud. 16, 231-236.

EHRICH, R. W., AND HARTSON, H. R. 1981. DMS-
An environment for dialogue management. In
Proceedings of COMPCON81 (Washington, D.C.,
Sept.). IEEE, New York, p. 121.

EHRICH, R. W., AND WILLIGES, R. C., EDS. 1986.
Designing Human-Computer Dialogues. Elsevier,
Amsterdam.

EHRLICH, K. 1985. Factors influencing technology
transfer. SZGCHZ Bull. 17, 2, 20-25.

EVANS, R., FIDDIAN, N. J., AND GRAY, W. A.
1981. Adaptable user interfaces for portable, in-
teractive computing software systems. SZGSOC
Bull. 13, 2-3 (Jan.), 59.

FELDMAN, M. B. 1981. Tools to facilitate human-
factors improvement in interactive information
display systems. In Proceedings of COMPCONBI
(Washington, D.C., Sept.). IEEE, New York, pp.
117-118.

FELDMAN, M. B., AND ROGERS, G. T. 1982. Toward
the design and development of style-independent
interactive systems. In Proceedings of the Confer-
ence on Human Factors in Computer Systems
(Gaithersburg, Md., Mar.). ACM, New York, pp.
111-116.

FISCHER, G. 1982. Symbiotic, knowledge-based com-
puter support systems. In Proceedings of the ZFAC
Conference on Analysis, Design, and Evaluation
of Man-Machine Systems (Baden-Baden, Ger-
many, Sept.), pp. 351-358.

FISCHER, G. 1987. An object-oriented construction
and tool kit for human-computer communica-
tion. Comput. Graph. SIGGRAPH Workshop on

Software Tools for User Interface Development.
ACM, New York.

FLANAGAN, D., LENOROVITZ, D., STANKE, E., AND
STOCKER, F. 1985. RIPL Concept of Operations
and System Architecture. CTA Internal Docu-
ment (May), Boulder, Colo.

FLECCHIA, M. A., AND BERGERON, R. D.
1987. Specifying complex dialogs in ALGAE. In
Proceedings of the ACM CHZ + GZ’87 Conference.
(Toronto, Ontario, Canada, Apr.). ACM, New
York, pp. 229-234.

FOLEY, J. D. 1980. The structure of interactive com-
mand languages. In Proceedings of the ZFZP
Workshop on the Methodology of Interaction.
North-Holland Publ., Amsterdam, pp. 227-234.

FOLEY, J. D. 1981. Tools for the designers of user
interfaces. Rep. GWU-IIST-81-07, George Wash-
ington University Institute for Information Sci-
ence and Technology, Washington, D.C. (Mar.).

FOLEY, J. D., AND VAN DAM, A. 1982. Fundamentals
of Interactive Computer Graphics. Addison-
Wesley, Reading, Mass.

FOLEY, J. D., AND WALLACE, V. L. 1974. The art of
natural graphic man-machine conversation. In
Proc. ZEEE 63, 4, 462-471.

FOLEY, J. D., GIBBS, C., KIM, W. C., AND KOVACEVIC,
S. 1988. A knowledge-based user interface man-
agement system. In Proceedings of the ACM
CHZ’88 Conference on Human Factors in Com-
puting Systems (Washington, D.C., May). ACM,
New York, pp. 67-72.

FREEMAN, P. A. 1980. A perspective on requirements
analysis and specification. In Tutorial on Soft-
ware Design Techniques, P. A. Freeman and
A. I. Wasserman, Eds.

GOLDBERG, A., AND ROBSON, D. 1983. Smalltalk-80:
The Language and Its Implementation. Addison-
Wesley, Reading, Mass.

GOMAA, H., AND SCOTT, D. B. 1981. Prototyping as
a tool in the specifications of user requirements.
In Proceedings of the 5th International Conference
on Software Engineering (San Diego, Calif.,
Mar.). ACM/IEEE, New York.

GOOD, M. D., WHITESIDE, J. A., WIXON, D. R., AND
JONES, S. J. 1984. Building a user-derived in-
terface. Commun. ACM 27, 10, 1032-1043.

GOODMAN, D. 1987. The Complete HyperCard Hand-
book. Bantam Books, Toronto.

GRANOR, T. E., AND BADLER, N. I. 1986. GUIDE:
Graphical User Interface Development Environ-
ment. In Proceedings of Trends and Applications
(Silver Spring, Md.). IEEE Computer Society and
National Bureau of Standards, Gaithersburg,
Md., pp. 37-41.

GRAPHICAL INPUT INTERACTION TECHNIQUES
WORKSHOP SUMMARY 1983. Comput. Graph.
17, 1 (Jan.), 5-30.

GRAY, P. D., AND KILGOUR, A. C. 1985. GUIDE: A
UNIX-based dialogue design system. Departmen-
tal Research Rep. CSC/85/R8, Department
of Computing Science, University of Glasgow,
Lilybank Gardens, Glasgow, Scotland.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

88 l H. R. Hartson and D. Hix

GREEN, M. 1981. A methodology for the specifica-
tion of graphical user interfaces. Comput. Graph.
15, 3.

GREEN, M. 1985. The University of Alberta user
interface management system. In Proceedings of
SIGGRAPH ‘85, 12th Annual Conference (San
Francisco, Calif., July 22-26). ACM, New York,
pp. 205-213.

GREEN, M. 1986. A survey of three dialog models.
ACM Trans. Graph. 5, 3(Jul.), 244-275.

GUEDJ, R. A., AND TUCKER, H. A., EDS. 1979.
Methodology in Computer Graphics: Seillnc I.
(Seillac, France). North-Holland Publ., Amster-
dam.

GUEDJ, R. A., TEN HAGEN, P. J. W., HOPGOOD,
F. R. A., TUCKER, H. A., AND DUCE, D. A., EDS.
1980. Methodology of Interaction: Seillac II
(Seillac, France)., Amsterdam.

GUEST, S. P. 1982. The use of software tools for
dialogue design. Znt. J. Man-Mach. Stud. 26,
263-285.

HANAU, P. R., AND LENOROVITZ, D. R. 1980a. A
prototyping and simulation approach to interac-
tive computer system design. In Proceedings of
the 17th ACM Conference on Design Automation
(Minneapolis, Minn., June 23-25). ACM, New
York.

HANAU, P. R., AND LENOROVITZ, D. R. 1980b.
Prototyping and simulation tools for user/
computer dialogue design. In Proceedings of ACM
SIGGRAPH ‘80, 7th Annual Conference on
Computer Graphics and Interactive Techniques
(Seattle, Wash., July 14-18). ACM, New York.

HANSEN, W. J. 1971. User engineering principles for
interactive systems. In Proceedings of the AFIPS
Conference, vol. 39. AFIPS Press, Reston, Va.,
pp. 523-532.

HARTSON, H. R. 1969. Digital control simulation
system. In Proceedings of the 6th Annual
SHARE-ACM-IEEE Design Automation Work-
shop (Miami Beach, Fla., June). ACM/IEEE,
New York, pp. 113-128.

HARTSON, H. R., ED. 1985. Aduances in Human-
Computer Interaction. vol. 1. Ablex, Norwood,
N.J.

HARTSON, H. R. 1989. Control and communication
in user interface management. IEEE Softw. 6
(Jan.), 62-70.

HARTSON, H. R., AND HIX, D., EDS. 1988. Advances
in Human-Computer Interaction, vol. 2. Ablex,
Norwood, N.J.

HARTSON, H. R., AND HIX, D. 198813. Toward
empirically derived methodologies and tools for
human-computer interface development. Znt. J.
Man-Mach. Stud. To be published.

HARTSON, H. R., AND SMITH, E. C. 1989. Rapid
Prototyping. To be published.

HARTSON, H. R., (JOHNSON) Hrx, D., AND EHRICH,
R. W. 1984. A human-computer dialogue man-
agement system. In Proceedings of INTERACT
‘84, First IFIP Conference on Human-Computer

Interaction (London, Sept.). International Fed-
eration for Information Processing, pp. 57-61.

HAYES, P. J. 1985. Executable interface definitions
using form-based interface abstractions. In Ad-
vances in Human-Computer Interaction, vol. 1.
H. Rex Hartson, Ed. Ablex, Norwood, N.J., pp.
161-190.

HAYES, P. J., AND REDDY, R. 1983. Steps toward
graceful interaction in spoken and written man-
machine communication. Int. J. Man-Mach.
Stud. 29, 231-384.

HAYES, P. J., AND SZEKELY, P. A. 1983. Graceful
interaction through the COUSIN command
interface. Znt. J. Man-Mach. Stud. 19, 295-306.

HAYES, P. J., BALL, E., AND REDDY, R. 1981.
Breaking the man-machine communication bar-
rier. IEEE Comput. 14 (Mar.), 19-30.

HAYES, P. J., SZEKELY, P. A., AND LERNER, R. A.
1985. Design alternatives for user interface
management systems based on experience with
COUSIN. In Proceedings of the ACM CH1’85
Conference on Human Factors in Computing S’ys-
terns (San Francisco, Calif., Apr.). ACM, New
York, pp. 169-175.

HAYS, G. G. 1969. Computer-aided design: Simula-
tion of digital design logic. IEEE Trans. Comput.
(Jan.), l-10.

HCI Hawaii, First International Conference on
Human-Computerlnteraction. 1984. (Honolulu,
Hawaii, Aug.). International Commission on Hu-
man Aspects in Computing.

HCI Hawaii, Second International Conference on
Human-ComputerInteraction. 1987. (Honolulu,
Hawaii, Aug.). International Commission on Hu-
man Aspects in Computing.

HELANDER, G. A. 1981. Improving system usability
for business professionals. IBM Syst. J. 20, 3,
294-305.

HENDERSON, D. A., JR. 1986. The Trillium user
interface design environment. In Proceedings of
the ACM CHI’86 Conference on Human Factors
In Computing Systems (Boston, Mass., Apr.).
ACM, New York, pp. 221-227.

HILL, R. D. 1987. Event-response systems: A tech-
nique for specifying multi-threaded dialogues.
In Proceedings of the ACM CHI+GI’87 Confer-
ence (Toronto, Ontario, Canada, Apr.). ACM,
New York, pp. 241-248.

HIX, D., AND HARTSON, H. R. 1986. An interactive
environment for dialogue development: Its
design, use, and evaluation. In Proceedings of the
ACM CHI’86 Conference on Human Factors in
Computing Systems (Boston, Mass., Apr.). ACM,
New York, pp. 228-234.

HIX, D., AND HARTSON, H. R. 1987. A structural
model for hierarchically describing human-
computer dialogue. In Proceedings of INTERACT
‘87, Second IFIP Conference on Human-
Computer Interaction (Stuttgart, West Germany,
Sept.). International Federation for Information
Processing, pp. 695-700.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human-Computer Interface Development l 89

HOFFMAN, H.-J. 1985. Research work in design
methodology for interactive programs. Tech. Rep.
PUlR2/86, Department of Computer Science.
Technische Hochschule Darmstadt, Darmstadt,
West Germany.

HOSIER, J., ED. 1978. Structured analysis and
design. Infotech State of the Art Report, pp.
195-208.

HUTCHINS, E. L., HOLLAN, J. D., AND NORMAN,
D. A. 1986. Direct manipulation interfaces. In
User Centered System Design, D. A. Norman and
S. W. Draper, Eds. Lawrence Erlbaum Assoc.,
Hillsdale, N.J.

IBM Development Management System for CMS:
Guide and reference 1983. IBM Document
SC24-5198-1, White Plains, N.Y. (Dec.).

IBM Systems Journal. 1981. Special Issue: Human
Factors 20, 2.

IBM System Productivity Facility for MVS, General
Information. 1983. IBM Document GC34-
2039-0, White Plains, N.Y. (Aug.).

IBM System Productivity Facility, Dialog Manage-
ment Guide, VM/SP. 1985. IBM Document SC
34-4009-0, White Plains, N.Y. (Sept.).

IBM VM/SP System Product Interpreter reference.
1983. IBM Document SC24-5239 (Sept.).

IEEE Computer. 1982. Special Issue: Human-
Computer Interaction 1.5, 11 (Nov.).

IEEE Computer. 1983. Special Issue: The DOD
STARS Program 16, ll(Nov.).

IEEE Computer Graphics. 1979. Special Report on
the Graphics Standards Planning Committee
13, 3.

IEEE Computer Graphics. 1984. Special Issue:
Graphics Kernel System 7 (Feb.).

IEEE Software. 1989. Special Issue: Developing
Human-Computer Interfaces-Software of a Dif-
ferent Sort 6 (Jan.).

INTERACT ‘84. 1984. First IFIP Conference on
Human-Computer Interaction (London, Sept.).
International Federation for Information
Processing.

INTERACT ‘87. 1987. Second IFIP Conference
on Human-Computer Interaction (Stuttgart,
Sept.). International Federation for Information
Processing.

JACKSON, M. A. 1975. Principles of Program Design.
Academic Press, Orlando, Fla.

JACKSON, M. A. 1983. System Deuelopment. Prentice-
Hall International, Englewood Cliffs, N.J.

JACOB, R. J. K. 1983. Using formal specifications in
the design of the human-computer interface.
Commun. ACM 26, 4 (Apr.), 259-264.

JACOB, R. J. K. 1985. An executable specification
technique for describing human-computer inter-
action. In Advances in Human-Computer Inter-
action, vol. 1. H. Rex Hartson, Ed. Ablex,
Norwood, N.J., pp. 211-244.

JOHNSON (Hrx), D. 1985. The structure and devel-
opment of human-computer interfaces. Ph.D.

dissertation, Dept. of Computer Science, Virginia
Polytechnic Institute and State Univ., Blacks-
burg, Va.

KAISER, P., AND STETINA, I. 1982. A dialogue gen-
erator. Softw. Pratt. Exper. 12, 693-707.

KAMRAN, A., AND FELDMAN, M. B. 1983. Graphics
programming independent of interaction tech-
niques and styles. Comput. Graph. 17, 1 (Jan.),
58-66.

KASIK, D. J. 1982. A user interface management
system. Comput. Graph. 16, 3,99-106.

KASIK, D. J. 1985. An architecture for graphics ap-
plication development. In Proceedings of IEEE
International Conference on Robotics and Auto-
mation (Mar.). IEEE, New York, pp. 365-371.

KENNEDY, T. C. S. 1974. The design of interactive
procedures for man-machine communication.
Znt. J. Man-Mach. Stud. 6, 309-334.

KIERAS, D., AND POLSON, P. G. 1983. A generalized
transition network representation for interactive
systems. In Proceedings of the ACM CHI ‘83
Conference on Human Factors in Computing Sys-
tems (Boston, Mass., Dec.). ACM, New York, pp.
103-106.

KIERAS, D., AND POLSON, P. G. 1985. An approach
to the formal analysis of user complexity. Int. J.
Man-Mach. Stud. 22, 365-394.

LANTZ, K. A., TANNER, P. P., BINDING, C., HUANG,
K. T., AND DWELLY, A. 1987. Reference models,
window systems, and concurrency. Comput.
Graph. 21, 2 (Apr.), 87-97.

LENOROVITZ, D. R., AND RAMSEY, H. R. 1977. A
dialogue simulation tool for use in the design of
interactive computer systems. In Proceedings of
the Human Factors Society (Santa Monica,
Calif.). Human Factors Society, pp. 95-99.

LINEBARGER, R. N., AND BRENNAN, R. D. 1964. A
survey of digital simulation. Simulation (Dec.).

MACDONALD, A. 1982. Visual programming. Data-
mation (Oct.), 132-140.

MANTEI, M. 1986. Techniques for incorporating hu-
man factors in the software lifecycle. In Proceed-
ings of Structured Techniques Association 3rd
Annual Conference (Chicago, Ill.), pp. 177-203.

MARTIN, J. 1973. Design of Man-Computer Dia-
logues. Prentice-Hall, Englewood Cliffs, N.J.

MASON, R. E. A., AND CAREY, T. T. 1981.
Productivity experiences with a scenario tool. In
Proceedings of the IEEE COMPCON (Washing-
ton, D.C., Sept.). IEEE, New York, pp. 106-111.

MASON, R. E. A., AND CAREY, T. T. 1983.
Prototyping interactive information systems.
Commun. ACM 26, 5 (May), 347-352.

MAURER, M. E. 1983. Full-screen testing of inter-
active applications. IBM Syst. J. 22, 3, 246-261.

MEADS, J. A. 1987. The standards pipeline. Comput.
Graph. 21, 3 (Jun.), 235-237.

MILLER, L. A., AND THOMAS, J. C., JR. 1977.
Behavioral issues in the use of interactive sys-
tems. Int. J. Man-Mach. Stud. 9, 509-536.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

90 l H. R. Hartson and D. Hix

MILLS, C. C., AND WASSERMAN, A. I. 1984. .A tran-
sition diagram editor. In Proceedings of the 1984
Summer Usenix Conference (Salt Lake City,
Utah). ACM, New York.

MORAN, T. P. 1981. The command language gram-
mar: A representation for the user interface of
interactive computer systems. Znt. J. Man-Much.
stud. 15, 3-51.

MORAN, T. P., ED. 1984. Human-Computer Znter-
action, A Journal of Theoretical, Empirical, and
Methodological Zssues of User Psychology and Sys-
tem Design. Lawrence Erlbaum Assoc., Hillsdale,
N.J.

MYERS, B. A. 1986. Visual programming, program-
ming by example, and program visualization: A
taxonomy. In Proceedings of the ACM CHZ’86
Conference on Human Factors in Computing Sys-
tems (Boston, Mass., Apr.). ACM, New York, pp.
59-66.

MYERS, B. A. 1987. Creating dynamic interaction
techniques by demonstration. In Proceedings of
the ACM CHZ-I-CZ’87 Conference (Toronto.
Ontario, Canada, Apr.). ACM, New York;
pp. 271-278.

MYERS, G. J. 1975. Reliable Software Through Com-
posite Design. Mason/Charter Publ.

MYERS, G. J. 1978. Composite/Structured Design.
Litton Education Publishing Inc.

National Bureau of Standards Conference on
Human Factors in Computer Systems. 1982.
(Gaithersburg, Md., Mar.).

National Research Council Workshop on Software
Human Factors. 1983. National Academy of
Sciences (Washington, D.C., May).

NAUR, P., ED. 1963. Revised report on the algo-
rithmic language ALGOL 60. Commun. ACM 6
(Jan.).

NEWMAN, W. M. 1968. A system for interactive
graphical programming. In Proceedings of the
AFZPS Spring Joint Computer Conference.
Thompson Books, Washington, D.C.

NEWMAN, W. M., AND SPROULL, R. F. 1979.
Principles of Interactive Computer Graphics, 2nd
ed. McGraw-Hill, New York.

NORMAN, D. A. 1984. Four stages of user activities.
In Proceedings of ZNTERACT ‘84, First ZFZP
Conference on Human-Computer Interaction
(London, Aug.) International Federation for In-
formation Processing.

NORMAN, D. A., AND DRAPER, S. W. 1986. User-
Centered System Design. Lawrence Erlbaum
Assoc., Hillsdale, N.J.

OLSEN, D. R., JR. 1983. Automatic generation of
interactive systems. Comput. Graph. 17, 1 (Jan.),
53-57.

OLSEN, D. R., JR. 1984a. User’s manual for MIKE-
2.0. Arizona State University Tech. Rep.

OLSEN, D. R., JR. 1984b. Pushdown automata for
user interface management. ACM Trans. Graph.
3, 3, 177-203.

OLSEN, D. R., JR., AND DEMPSEY, E. P. 1983.
SYNGRAPH: A graphical user interface genera-
tor. Comput. Graph. 17, 3, 43-50.

OLSEN, D. R., JR., BUXTON, W., EHRICH, R. W.,
KASIK, D. J., RHYNE, J. R., AND SIBERT, J.
1984. A context for user interface management.
IEEE Comput. (Dec.), 33-42.

OLSEN, D. R., JR., DEMPSEY, E. P., AND ROGGE, R.
1985. Input/output linkage in a user interface
management system. Comput. Graph.- 19, 3
(July), 191-197.

OVERMYER, S. P., AND CAMPBELL, E. E., JR. 1984.
Rapid prototyping: An approach to human-com-
puter interface design. In Proceedings of the 28th
Annual Meeting of-the Human F&to& Society
(San Antonio, Tex.). Human Factors Society.

PARNAS, D. 1969. On the use of transition diagrams
in the design of a user interface for an interactive
computer system. In Proceedings of the ACM
National Conference. ACM, New York, pp.
379-385.

PERRY, T. S. 1988. ‘PostScript’ prints anything:
A case history. IEEE Spectrum (May), 42-46.

PFAFF, G., ED. 1985. User Interface Management
Systems. Springer-Verlag, Berlin.

PORCELLA, M., FREEMAN, P., AND WASSERMAN, A. I.
1983. Ada methodology questionnaire sum-
mary. Softw. Eng. Notes 8, 1, 51-98.

PRECISION VISUALS, INC. 1987. A Guide to Designing
Friendly User/Computer Interfaces. 6260 Look-
out Road, Boulder, Cola. 80301.

PROTOTYPER. 1987. SmethersBarnes Prototyper
User’s Manual. P.O. Box 639, Portland, Ore.
97207.

PUGLIA, V., PETZOLD, C., STONE, M. D., DUNTE-
MANN, J., AND CHISHOLM, P. 1986. Operating
in a new environment. PC Magazine (Feb.),
109-132.

PUK, R. 1986. Enhancements to PHIGS input
model. X3H3.1/86-48 (Nov. 10).

REISNER, P. 1981. Formal grammar and human
factors design of an interactive graphics system.
IEEE Trans. Softw. Eng. SE-7, 2 (Mar.),
229-240.

REISNER, P. 1982. Further developments toward us-
ing formal grammar as a design tool. In Proceed-
ings of the Conference on Human Factors in
Computer Systems (Gaithersburg, Md., Mar.).
ACM, New York, pp. 309-314.

REISNER, P. 1983a. Formal grammar as a tool for
analyzing ease of use: Some fundamental con-
cepts. Human Factors in Computer Systems.
Ablex, Norwood, N.J.

REISNER, P. 1983b. Analytic tools for human factors
of software. IBM Research Laboratory Rep.
RJ 3803 (43605), San Jose, Calif.

ROACH, J., AND NICKSON, M. 1983. Formal specifi-
cations for modeling and developing human/com-
puter interfaces. In Proceedings of the ACM CHZ
‘83 Conference on Human Factors in Computing

ACM Computing Surveys, Vol. 21, No. 1, March 1989

Human- -Computer Interface Development l 91

Systems (Boston, Mass., Dec.). ACM, New York,
pp. 35-39.

ROACH, J., HARTSON, H. R., EHRICH, R. W., YUNTEN,
T., AND JOHNSON, D. HIX. 1982. DMS: A
comprehensive system for managing human-
computer dialogue. In Proceedings of the Confer-
ence on Human Factors in Computer Systems
(Gaithersburg, Md., Mar.). ACM, New York, pp.
102-105.

ROSENBURG, V. 1974. The scientific premises of
information science. J. Am. SOC. If. Sci. (July-
Aug.), 263-269.

ROSENTHAL, D., AND YEN, A. 1983. User interface
models summary. Comput. Graph. 17, 3 (Jan.),
16-20.

Ross, D. T., AND SCHOMAN, K. E. 1977. Structured
analysis for requirements definition. IEEE
Trans. Softw. Eng. SE-3, 1 (Jan.).

ROWE, L. A., AND SHOENS, K. A. 1983. Pro-
gramming language constructs for screen def-
inition. IEEE Trans. Softw. Eng. SE-g, 1 (Jan.),
31-40.

RUBEL, A. 1982. Graphic based applications-Tools
to fill the software gap. Digit. Des. 3 (July),
17-30.

SCHEIFLER, R. W., AND GETTYS, J. 1986. The X
window system. ACM Trans. Graph. 5, 3 (Apr.),
79-109.

SCHMUCKER, K. 1986. Mac App: An application
framework. BYTE II, 8, 189-193.

SCHULERT, A. J., ROGERS, G. T., AND HAMILTON,
J. A. 1985. ADM-A dialogue manager. In Pro-
ceedings of the ACM CHI ‘85 Conference on Hu-
man Factors in Computing Systems (San
Francisco. Calif.. Aur.). ACM. New York. DD.

SENKO, M. E., ALTMAN, E. B., ASTRAHAM, M. M.,
FEHDER, P. L., AND WANG, C. P. 1972. A data
independent architectural model: Four levels of
description from logical structures to physical
structures. Reo. RJ982. IBM Corporation. Re-
search Division, San Jose, Calif. (Feb.).

SHNEIDERMAN, B. 1980. Software Psychology: Hu-
man Factors in Computer and Information
Systems. Winthrop Publ., Cambridge, Mass.

SHNEIDERMAN, B. 1982. Multi-party grammars and
related features for designing interactive
systems. IEEE Trans. Syst. Man Cybern. 12, 2
(Mar.-Apr.), 148-154.

SHNEIDERMAN, B. 1983. Direct manipulation: A step
beyond programming languages. IEEE Computer
(Aug.), 57-69.

WASSERMAN, A. I. 1981. User software engineering
and the design of interactive systems. In Proceed-
ings of the 5th International Conference of Soft-
ware Engineering. ACM/IEEE, New York. pp.
387-393.

SHNEIDERMAN, B. 1987. Designing the User Inter-
face: Strategies for Effective Human-Computer
Interaction Addison-Wesley, Reading, Mass.

SIBERT, J. L., HURLEY, W. D., AND BLESER, T. W.
1988. Design and implementation of an object-
oriented user interface management system.
In Advances in Human-Computer Interaction.
vol. II, H. Rex Hartson and D. Hix, Eds. Ablex,
Norwood, N.J.

WASSERMAN, A. I. 1982. The user software
engineering methodology: An overview. In Znfor-
mation System Design Methodologies, A. A.
Verriin-Stuart, Ed. North-Holland
Amsterdam, pp. 591-628.

Publ.,

WASSERMAN, A. I. 1985. Extending transition dia-
grams for the specification of human-computer
interaction. IEEE Trans. Softw. Eng. SE-11, 8
(Aug.).

SIME, M. E., AND COOMBS, M. J., EDS. 1983.
Designing for Human-Computer Communication.
Academic Press, Orlando, Fla.

SKYLIGHTS. 1987. Skylights Systems, Inc., Medford,
Mass.

SMITH, D. C., IRBY, C., KIMBALL, R., VERPLANK, B.,
AND HARSLEM, E. 1982. Designing the Star user
interface. BYTE 7, 4 (Apr.), 242-282.

SMITH, H. T., AND GREEN, T. R. G. 1980. Human
Interaction with Computers. Academic Press,
London.

SMITH, S. L., AND MOSIER, J. N. 1986. Guidelines
for designing user interface software. Tech. Rep.
ESD-TR-86-278. Hanscom Air Force Base,
Mass.: USAF Electronic Systems Division (NTIS
No. AD A177198).

STEVENS, W. P. 1981. Using Structured Design.
Wiley, New York.

STEVENS, W. P., MYERS, G. J., AND CONSTANTINE,
L. L. 1974. Structured design. IBM Syst. J. 13.

TANNER, P. P., AND BUXTON, W. A. S. 1984. Some
issues in future user interface management
system (UIMS) development. In Seeheim Work-
shop of User Interface Management Systems.
Eurographics-Springer.

TANNER, P. P., MACKAY, S. A., STEWART, D.A., AND
WEIN, M. 1986. A multitasking switchboard ap-
proach to user interface management. In Proceed-
ings of the ACM SIGGRAPH ‘86 Conference in
Computer Graphics, 20, 4 (Aug.). ACM, New
York, pp. 241-248.

TESLER, L. 1981. The Smalltalk environment.
BYTE 6, 8 (Aug.), 90-147.

TOFFLER, A. 1980. The Third Waue. Bantam Books,
New York.

UNICAD, INC. 1985. Unicad User Interface Manual.
1695 38th Street, Boulder, Colo. 80301.

VAN DAM, A., SKLAR, D., MICHENER, J., AND FOLEY,
J. 1987. PHIGS public reviews-input model.
X3H3/87-69 (Jan. 18).

WASSERMAN, A. I. 1973. The design of idiot-proof
interactive systems. In Proceedings of the Na-
tional Computer Conference (Montvale, N.J.).
ACM, New York.

WASSERMAN, A. I. 1980. Information system design
methodology. J. Am. SOC. fnf. Sci. (Jan.), 5-24.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

92 l H. R. Hartson and D. Hix

WASSERMAN, A. I., AND SHEWMAKE, D. T. 1982.
Rapid prototyping of interactive information sys-
tems. ACM SIGSOFT Sojtw. Eng. Notes (Dec.),
pp. 1-18.

WASSERMAN, A. I., AND SHEWMAKE, D. T. 1985.
The role of prototypes in the user software engi-
neering methodology. In Advances in Human-
Computer Interaction, vol. 1, H. Rex Hartson, Ed.
Ablex, Norwood, N.J., pp. 191-210.

WASSERMAN, A. I., AND STINSON, S. K. 1979. A
specification method for interactive information
systems. In Proceedings of the IEEE Conference
on Specification of Reliable Software (Cambridge,
Mass.). IEEE, New York, pp. 68-79.

WASSERMAN, A. I., PIRCHER, P. A., SHEWMAKE, D.
T., AND KERSTEN, M. L. 1986. Developing in-
teractive information systems with the user soft-
ware engineering methodology. IEEE Trans.
Softw. Eng. SE-15 2 (Feb.), 326-345.

WEINBERG, V. 1980. Structured Analysis. Prentice-
Hall, Englewood Cliffs, N.J.

WILLIAMS, G. 1983. The Lisa computer system.
BYTE (Feb.), 33-50.

WILLIAMS, G. 1984. The Apple Mabintosh com-
puter. BYTE 9, 2 (Feb.), 30-54.

WILLICES, R. C. 1984. Evaluating human-computer
software interfaces. In Proceedings of the 1984
International Conference on Occupational Ergo-
nomics (Toronto, Canada, May).

WIXON, D., WHITESIDE, J., GOOD, M., AND JONES,
S. 1983. Building a user-defined interface. In
Proceedings of the ACM CHI ‘83 Conference on
Human Factors in Computing Systems (Boston,
Mass., Dec.). ACM, New York, pp. 24-27.

WONG, P. C. S., AND REID, E. R. 1982. FLAIR-
User interface dialog design tool. Comput. Graph.
16, 3 (July), 87-98.

WOODS, W. A. 1970. Transition network grammars
for natural language analysis. Commun. ACM 13,
591-606.

WRIGHT, P. R., AND BROWN, B. W. 1978. A proces-
sor for providing friendly environments for fre-
quently used application packages. In Proceedings
of the ACM Annual Conference (Washington,
D.C., Dec.), vol. 1. ACM, New York, pp. 346-350.

YOURDON, E., AND CONSTANTINE, L. L. 1979.
Structured Design. Prentice-Hall, Englewood
Cliffs, N.J.

YUNTEN, T., AND HARTSON, H. R. 1985. A SUPER-
visory Methodology and Notation (SUPER-
MAN) for human-computer system develop-
ment. In Advances in Human-Comouter Znter-

WILLICES, B. H., AND WILLIGES, R. C. 1981. User action. vol. 1, H. Rex Hartson, ‘Ed. Ablex,
considerations in computer-based information Norwood, N.J., 243-281.
systems. Tech. Rep. CSIE-81-2, VPI&SU ZELKOWITZ, M. V., ED. 1982. ACMSZGSOFT Work-
Departments of Computer Science and Industrial shop on Rapid Prototyping ACM (Columbia, Md.
Engineering (Sept.). Apr.). ACM, New York.

Received October 1982; final revision accepted January 1988.

ACM Computing Surveys, Vol. 21, No. 1, March 1989

