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as frameworks for understanding the elements of interfaces and for guiding the dialogue 
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accomplished by a variety of notational schemes for describing the interface. Numerous 
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are presented to illustrate these concepts. 
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As we grow mxe familiar with the intelligent environment, and learn to converse with it 
from the time we leave the cradle, we will begin to use computers with a grace and 
naturalness that is hard for us to imagine today. And they will help all of us--not just 
a few “super-technocrats”-to think more deeply about ourselves and the world. 

INTRODUCTION 

As the “Gestalt of the computer” [Rosen- 
burg 19741 becomes more pervasive in our 
society, the key to the real effectiveness of 
computers is usability by people other than 
computer professionals. As the above quo- 
tation suggests, the possibilities of this 
amazing machine are limited not by its 
power to compute, but rather by its power 

to communicate with its human users. Rel- 
ative to advances in approaches to software 
design, the important issue of human- 
computer interface development has begun 
to be addressed only recently. The increas- 
ing interest in this area has been diverse 
and, at times, disorganized. Although many 
researchers have proposed viable solutions 
to specific issues, these issues have gener- 
ally been addressed without a framework 
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or a broader strategy for managing the 
whole development of human-computer 
interfaces. 

A key to building such a framework lies 
in reassessing the entire software develop- 
ment process, with particular emphasis on 
development of the human-computer in- 
terface as an integrated part of that process. 
That reassessment has begun, and this 
article identifies and examines the major 
concepts in human-computer interface 
management that have emerged. It uses 
specific systems to illustrate these con- 
cepts, which can be used to classify and 
describe system features and approaches. 

This paper has been a long time in the 
writing. When it was started in 1982, its 
intent was to explain some of the basic 
early concepts in an embryonic field. Most 
of what is now in the field did not exist 
then. There was almost no common termi- 
nology; even now terminology is not con- 
sistently established. The ACM SIGCHI 
(Special Interest Group on Computer- 
Human Interaction) was formed during the 
time this manuscript was being written and 
revised. Human-computer interaction is 
now an area of research and practice with 
broadly recognized impact and increasing 
rate of growth. Like any survey, this paper 
is a representative snapshot of the subject 
at a given point in time. 

Scope of the Paper 

The focus of this survey is the management 
of the computer science, or constructional, 
aspects of human~computer interface de- 
velopment. We do not deal explicitly with 
interface form and content nor with behav- 
ioral aspects of interface development. 
Consequently, this is not a tutorial on 
guidelines and principles for creating qual- 
ity interfaces; rather, it is a presentation of 
the means-the theories, the methodol- 
ogies, and the tools-for incorporating dia- 
logue design principles cmce they are known 
into human-computer interfaces. In fact, 
the concepts presented are independent of 
specific dialogue design principles. The 
problem addressed here is not how to con- 
struct good interfaces; it is how to provide 

anenuironment in whichgood interfaces can 
be constructed. 

Psychological models of end-users and 
aspects of cognition, as well as empirical 
evaluation of interfaces, are not part of 
this paper. Although artificial intelligence 
considerations such as natural language 
understanding, knowledge-based end-user 
models, and expert systems are very much 
a part of the broader subject of human- 
computer interfaces, especially in the long 
term, they are excluded from the scope of 
this paper. The volume of research in each 
of these areas is such that they merit sep- 
arate surveys. 

Although the viewpoint from which this 
survey is prepared has a computer science 
orientation, it addresses concepts and is- 
sues beyond specific technical questions. Its 
intended audience is primarily computer 
science researchers and practitioners, as 
well as psychologists and human factors 
experts who wish to know more about 
the computer science aspects of human- 
computer interaction. 

Background 

The groundwork for development of effec- 
tive human-computer interfaces was laid 
during the last decade. Not surprisingly, 
among the leaders of this early work were 
some who specialized in graphics [Foley 
and Wallace 1974; Newman and Sproull 
19791. Literature on human factors and 
behavioral science research addressed in- 
terface design from an empirical perspec- 
tive [Miller and Thomas 19771. Most of the 
computer science work in this period, how- 
ever, subjectively addressed interface de- 
sign principles and guidelines [Cheriton 
1976; Hansen 1971; Kennedy 1974; Martin 
1973; Wasserman 1973, 19811, and this 
work was not, in general, experimentally 
validated. Of the hundreds of guidelines 
compiled from the literature [Smith and 
Mosier 1986; Williges and Williges 19811, 
only a small portion have any empirical 
basis. Also, many contradictions and incon- 
sistencies are found in the literature. None- 
theless, design principles and guidelines 
are important, and there is a need for 
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methodologies and tools to facilitate in- 
clusion of these principles in interface 
design. 

The interest in human engineering of 
computer systems has grown to the point 
that entire journal issues are devoted to 
research in this area [e.g., ACM Computing 
Surveys 1981; Communications of the ACM 
1983; IBM Systems Journal 1981; IEEE 
Computer 1982; IEEE Software 19891. 
Workshops are dedicated to the study of 
the human-computer interface and its de- 
sign [e.g., ACM SIGGRAPH 1986; ACM 
SIGGRAPH 1988; Graphical Input Inter- 
action Techniques 1983; Guedj and Tucker 
1979; Guedj et al. 1980; National Research 
Council 1983; Olsen et al. 1984; Pfaff 19851. 
A sequence of meetings in this field has led 
to the CHI (Computer-Human Interac- 
tion) conference and other similar confer- 
ences [ACM CHI 1983, 1985, 1986, 1987, 
1988; ACM SIGSOC 1981; HCI Hawaii 
1984, 1987; INTERACT 1984, 1987; NBS 
19821. Journals and books are specializing 
in this area [e.g., Card et al. 1983; Coombs 
and Alty 1981; Ehrich and Williges 1986; 
Hartson 1985; Hartson and Hix 1988; 
Moran 1984; Norman and Draper 1986; 
Shneiderman 1980, 1987; Sime and 
Coombs 1983; Smith and Green 19801. 

This new area of work can, in fact, be 
considered revolutionary because it has 
profoundly changed the way human- 
computer interfaces are developed. It 
shares characteristics of other computer 
science revolutions such as those brought 
about by the emergence of high-level lan- 
guages, database management, and struc- 
tured programming. These revolutions 
have similarly been punctuated with tools 
having a significant impact on productivity. 
Each has also had its share of difficulties 
with initial acceptance. For most cases, 
however, the cost of not using new concepts 
and tools eventually became too high to 
resist. 

Human-Computer Interface Management: 
Terminology for an Emerging Field 

In response to the lack of useful, consistent 
definitions, we present working definitions 
for key terms, drawing from the sometimes 

conflicting literature. These definitions 
are intended to help in understanding 
the framework of concepts this paper 
establishes. 

Ideally, the terms “human-computer dia- 
logue” and “human-computer interface” 
(also called the “user interface”) are de- 
fined separately to denote, respectively, the 
communication between a human user and 
a computer system and the medium for that 
communication. Thus, a dialogue is the ob- 
servable two-way exchange of symbols and 
actions between human and computer, 
whereas an interface is the supporting soft- 
ware and the hardware through which this 
exchange occurs. The two terms, however, 
are tied closely together in the development 
process, and we shall use them synony- 
mously here just as they are in most of the 
literature. 

Even with a working definition, it is 
sometimes difficult to identify within a 
computer-based system what is dialogue 
and what is computation; there are gray 
areas between. For example, task analysis 
and other end-user-oriented modeling 
involve the entire system’s behavior, both 
dialogue and computation. It might be 
possible to deduce a model of the entire 
system’s behavior from the dialogue 
ohservahles, but the terms “dialogue” and 
“interface” (as used in this paper) refer only 
to the end-user’s inputs and the localized 
processing of these inputs and to the pres- 
entation of the computer’s outputs.’ They 
do not refer to the functional (algorithmic) 
transformation of inputs into output- 
that is the purview of the computational 
component. 

Human-computer interface management 
or dialogue management [Ehrich and Hart- 
son 19811 or user interface management 
[GIIT 19831 refers to the management of 
the computer science, or constructional, 
aspects of humanwzomputer interface 
development, including representation, 
design, implementation, prototyping, exe- 
cution, evaluation, and maintenance. User 
interface management systems (UIMS) 

’ Unfortunately, this use of the terms “input” and 
“output” favors the vieupoint of the computer over 
that of the end-user, hut their usage teems too well 
established to he changed. 



are interactive tools for supporting 
these interface management activities (see 
Section 4). 

In order to discuss concepts of human- 
computer interface management, it is nec- 
essary to identify basic types of human- 
computer dialogue. According to Hutchins 
et al. [1986], there are at least two meta- 
phors that describe ways in which humans 
interact with computers: the conversational 
world and the model world. These corre- 
spond to two general types of dialogue: 
sequential dialogue and asynchronous dia- 
logue, respectively. In the conuersational 
world, the end-user describes what to do, 
typically by using a command language. 
This kind of dialogue is typically called 
sequential dialogue, moving in a predictable 
manner from one part of the dialogue to 
the next. Sequential dialogue allows both 
end-users and developers to visualize spe- 
cific logical sequencing behavior. Sequen- 
tial dialogue includes request-response 
interactions, typed command strings, nav- 
igation through networks of menus, and 
data entry. Figure 1 is a screen from a 
personal computer running an interactive 
compiler. This screen results from a linear 
sequence through a hierarchy of menus. 
The end-user first selected “options” 
from the menu bar at the top of the screen, 

which produced a pop-up menu from 
which “compiler” was selected. “Code gen- 
eration” was chosen from the subsequent 
menu, leading to the topmost menu shown 
in Figure 1. 

In the model world. the end-user shows 
what to do by “grabbing” and manipulating 
(e.g., with a mouse) visual representations 
of objects. Thus, direct manipulation 
[Shneiderman 1983, 19871 is used to de- 
scribe this interaction style. Figures 2a and 
2b show an example of simple direct ma- 
nipulation of a graphical object using a 
graphical paint package. The box in Figure 
2a is not large enough to enclose the base- 
ball player. The end-user can “grab” one of 
the “handles,” in this case the lower right- 
hand corner (as shown in Figure 2a), and 
directly stretch the rectangle by moving the 
mouse until the rectangle is the desired size 
(as shown in Figure 2b). 

Often associated with direct manip- 
ulation in the model world metaphor is 
multi-thread dialogue, a task-oriented con- 
cept referring to the multiplicity of task 
paths available to the end-user at any given 
instant during the dialogue. Figure 3 is a 
“dialogue box” that exhibits multi-thread 
dialogue. This dialogue box is displayed in 
response to an end-user request to open a 
document (file) from within a commonly 



10 . H. R. Hartson and D. Hix 

CL File El lit Stule Font Lauout Arranoe Fill Lines Pen 

* File Edit t Layout Rrrsnge Fill Lil 

m Untitled 

i 
i : 

(b) 

Figure 2. Example of direct manipulation dialogue 

used word processing system. The end-user setting a read only mode. Work on these 
can choose to do any of several different tasks can proceed in any order, without 
tasks, including scrolling through file synchronization among them. 
names, selecting a file, opening the cur- The general term for this kind of dialogue 
rently selected file, leaving the dialogue is nonsequential, or asynchronous, dia- 
box, changing drives, ejecting a disk, or logue. In sequential dialogue, the system 
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Unfortunately. I do not currently have any open positions for 
Graduate Research Assistants 

Figure 3. Example of a dialogue box that exhibits multi-thread dialogue. 

presents the end-user’s work one task at a 
time. In asynchronous dialogue, many tasks 
(threads) are available to the end-user at 
one time. Dialogue is asynchronous in the 
sense that sequencing of each thread is 
independent of the others. At almost any 
point in the work on one task, the end-user 
can switch to another task and, later, back 
to the first. Asynchronous, multi-thread 
dialogue is sometimes also called euent- 
based dialogue because end-user actions 
that initiate dialogue sequences (e.g., click- 
ing the mouse button on an icon) are viewed 
as input events. The system provides re- 
sponses to each input event. Concurrent 
dialogue is multi-thread dialogue in which 
more than one thread can be executed si- 
multaneously. While one task is executing, 
another can be started, overlapping the 
first. This represents concurrency from 
both the end-user’s and the system’s view- 
point. A simple example is a clock on 
the screen updated by a time-keeping pro- 
cess running concurrently with a word 
pUXeS%X. 

For conversational parts of a dialogue, 
end-users interact mainly via the keyboard. 
For model world parts of a dialogue, end- 
users interact by manipulating screen ob- 
jects. A click of the mouse button can be 

. 11 

used, for example, to select an object. This 
model world selection action corresponds 
directly to the naming of a menu choice, 
command, or object by the end-user in the 
conversational world. The large majority of 
direct manipulation interaction is accom- 
plished by movement of the mouse. An 
object is dragged to a new location. A corner 
of a graphical box is moved to change its 
size and shape. Objects are moved to indi- 
cate an operation to perform on them; for 
example, a file icon can be moved to a new 
directory or to a trash can icon to request 
that it be copied or deleted. 

The model world or direct manipulation 
style offers higher usability, in general, for 
end-users, but both it and the conversa- 
tional world style are currently used in 
many interfaces. The trend, however, is 
toward asynchronous kinds of dialogue. 
This trend is one of the most significant 
phenomena in the field today and is exem- 
plified by the Apple Macintosh personal 
computer. Following the Xerox PARC 
S”CCeSS of, among others, Smalltalk* 
[Cox 1986; Goldberg and Robson 1983; 
Tesler 19811, Star [Smith et al. 19821, and 

’ Smalltalk is a registered trademark of Casio, Inc 
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the Apple Lisa” [Williams 19831, the 
Macintosh’ [Williams 19841 introduced 
multiple windows and direct manipulation 
dialogues into the mass marketplace. The 
impact of these innovations and related 
projects and products has been enormous, 
changing the complexion of computing. 
They have become a de facto interface 
standard and are now copied in other per- 
sonal computers, workstations, and .even 
mainframes. 

Organization of the Paper 

As research has progressed in the field of 
interface management, some concepts have 
emerged upon which a framework for 
human-computer interface development 
can be based. This paper discusses those 
concepts, which are as follows: 

l Dialogue independence. The character- 
istic of an interactive software system 
that separates the design of dialogue from 
the design of computational software so 
that changes in either tend not to cause 
changes in the other. 

. Structural modeling of the human-com- 
puter interface. The description of the 
general process of human-computer 
interaction that can be used to direct 
the design of dialogue and dialogue 
development tools. 

l Representcition of the human-computer 
interface. The techniques used to rep- 
resent definitions of specific instances of 
human-computer interaction. 

. Interactiue tools for humanwomputer 
interface deuelopment. Software and 
hardware to help automate system de- 
velopment, especially for the human- 
computer interface. 

l Rapid prototyping. The process of 
building executable versions of partially 
constructed interactive systems to allow 
early observation of system behavior, 
especially its interface. 

. Methodologies for interactiue system de- 
uelopment. System development pro- 
cesses and life cycles that treat interface 
development as an equal and integral 

part of the overall software development 
PPXtXS. 

l Control structures. The organization of 
dialogue and computational components 
and the mechanisms that govern logical 
sequencing and internal commdnication 
among dialogue and computational 
events. 

This paper presents a definitional frame- 
work that describes each of these concepts 
and serves as a means for classifying var- 
ious approaches and systems. Extensive use 
is made of examples from interface devel- 
opment systems to illustrate the concepts. 
Some systems reported in this article have 
aspects that incorporate one or two, but not 
all, of these interface management con- 
cepts. Other systems come nearer to rep- 
resenting all the concepts. The Appendix 
to this paper is a sampler that describes 
selected representative systems in the 
context of the conceptual framework. The 
presentation of each system in the sampler, 
given in a uniform format based on the 
concepts and other features for interface 
management, shows how that system em- 
bodies the concepts. Discussing the con- 
cepts in the context of specific systems 
gives a better understanding of both the 
concepts and the systems. 

1. DIALOGUE INDEPENDENCE 

Early approaches to interactive system 
development typically caused dialogue and 
computational software to be tightly inter- 
spersed. Dialogue became less and less 
changeable as the design progressed. De- 
spite an enormous commitment of re- 
sources, the almost universal result was a 
poor human-computer interface. Because 
development of quality interfaces involves 
an iterative cycle of design and evaluation 
[Bennett 1984; Chapanis 1982; Good et al. 
19841, however, an important criterion for 
development of human-computer inter- 
faces is fast, easy modification. 

Database researchers and designers en- 
countered a similar problem in the need 
for easy modification of data without the 
necessity of changing the corresponding 
programs. The solution that emerged was 
data independence [Senko et al. 19721, a 
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concept that directs the design of data and 
data manipulation programs so that many 
changes in either do not necessitate 
changes in the other. A formal data defini- 
tion for communication between data and 
programs allows the decoupling of data in- 
stances from the programs. An analogous 
concept, called dialogue independence 
[Ehrich and Hartson 19811, is based on a 
formal definition for communication be- 
tween the human-computer interface and 
computational programs. Dialogue inde- 
pendence is a” approach in which design 
decisions affecting only the human-com- 
puter dialogue are isolated from those af- 
fecting only application system structure 
and computational software. In practice 
this means that the appearance of the in- 
terface to the end-user and choices of in- 
teraction styles (e.g., command languages, 
menus, forms) used to extract inputs from 
the end-user are not known to the compu- 
tational software. Dialogue independence 
is crucial to easy modification of the inter- 
face for iterative refinement, as well as 
ease of maintenance. Almost all modern 
approaches to human-computer interface 
management are based to some extent 
on dialogue independence. Section 1.2 
discusses approaches to accomplishing 
dialogue independence. 

tion System Z. Without dialogue indepen- 
dence to guide the development process, 
the program logic for sequencing through 
the typed commands and the data struc- 
tures for collecting end-user’s choices are 
programmed into the computational com- 
ponent. It is impossible to change the 
interface structure or details without af- 
fecting the computational component. 

Now let us suppose that testing with a 
particular end-user community revealed a 
requirement to update the interface design 
for Information System Z to pull-down 
menus and dialogue boxes (of the type 
shown earlier in Figure 3). To replace the 
typed command string parser in the inter- 
face would require significant changes in 
the overall system code, especially vali- 
dation of end-user inputs. A system de- 
velopment approach based on dialogue 
independence, however, would have 
allowed this change to be limited to the 
dialogue component and would not have 
required a change in the rest of the appli- 
cation system routines. Further, a view that 
recognizes the set of typed command 
strings as a grammatical structure within a 
command language could produce two dif- 
ferent interfaces-pull-down menus and 
typed strings, say-that share the same 
underlying dialogue structure. The sug- 
gested changes would then be relatively 
easy to make, and both kinds of interfaces 
could be used simultaneously with the same 
computational component. 

1.1 Motivation for Dialogue Independence 

Dialogue independence may be most easily 
understood by first considering its opposite. 
Without dialogue independence, both the 
way in which dialogue is structured and the 
details of how it is conducted with the end- 
user are directed by the computational 
requirements of the application system. 
Knowledge of dialogue details and decisions 
about interaction styles are intermixed 
with the computational component. Sys- 
tems resist modification, and it is difficult 
to provide for human factors. These diffi- 
culties are illustrated in the following small 
CWlPkS. 

The first example shows the importance 
of dialogue independence to flexibility of 
the interface design. Let us assume a cus- 
tomer specifies that a typed command lan- 
guage be used to convey commands and 
parameters from the end-user to Informa- 

The point to be made is that two very 
different problems are involved: one a com- 
puter science problem, the other a human 
factors problem. With dialogue indepen- 
dence, separate solutions can be generated, 
each requiring very different problem- 
solving skills. In the computer science 
problem, each computational routine needs 
a set of valid input values, not a conversa- 
tion with the end-user. The computational 
function should not care how these input 
values are validated, how they are entered 
by the end-user, or in fact where they come 
from at all. On the other hand, the human 
factors problem is to design the dialogue to 
adapt the computer as a tool to perform a 
task for the end-user. From this perspective 
the dialogue must be easy to use, accepting 
input values, providing feedback and 
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clarification where useful, checking input 
values against validation criteria, and guid- 
ing the end-user from inputs that do not 
meet the criteria to ones that do. The valid 
input values are then conveyed to the com- 
putational component. 

In the next example (not hypothetical), 
lack of dialogue independence prevented 
refinement of a software product design to 
meet human factors requirements such as 
consistency. A major vendor marketed a 
multifunction office information system 
that prided itself on ease of use of its inter- 
face. Yet here are instructions for accessing 
the help facility: 

The comma key on the minikeypad is the HELP 
key for farms. While in the ABC-Style Editor and 
Calendar Management, use PI% for HELP; use “H” 
for HELP while in the Desk Calculator; use the 
“GOLD” key plus an “H” key while using the XYZ- 
Style Editor. By the way, if you need help cre- 
ating a document, it is better to he in the Word 
Processing Menu when you press HELP rather than 
in the main menu.. It is a good idea to remember 
the location and purpose of each key mentioned 
above. 

The end-user, of course, must already know 
how to access help information in order to 
receive this message. When faced with this 
example, the vendor sales representative 
responded that this software package was 
an amalgamation of existing functions, 
with code coming from diverse sources, and 
that the interfaces of each function were so 
hopelessly interwoven into the application 
code that it would have been impossible to 
provide a single consistent interface in time 
to meet the marketing deadline. The result 
is obvious: a poor design to which negative 
customer feedback will eventually force 
many costly modifications. 

The last example shows how dialogue 
independence is used as a design abstrac- 
tion to allow a top-down approach, focusing 
first on high-level design issues while post- 
poning commitment to details. In a hypo- 
thetical Calendar Management System 
(Mantei, personal communication, 1985), 
four overlapping windows are used to dis- 
play an end-user’s monthly, weekly, daily, 
and hourly appointment schedule. The de- 
velopers know from their task analysis that 
some end-user function will be needed to 

bring each of these windows on top of the 
others at various times for viewing and 
manipulating. Further testing is required to 
decide what that function will be called and 
how it will be implemented in the interface. 
Possibilities include one single arrow key, 
or NEXT and PREVIOUS keys for tog- 
gling or sequencing through the windows. 
Since each successive window gives more 
detailed information, a ZOOM key is also a 
possibility. In the meantime, dialogue in- 
dependence allows developers to call this 
function something and embed it in the 
high-level sequencing logic and computa- 
tional routines, while deciding much later 
the end-user’s name for the function and 
details of the dialogue to invoke it. 

1.2 Approaches to Dialogue Independence 

How, then, can this separation be achieved? 
On the surface it may appear simple. Pro- 
grammers sometimes say, “Oh, I’ve been 
doing that for years,” meaning that they 
put their end-user error messages in one or 
two procedures or files separate from the 
computational routines. Or they mean that 
a11 their input and output with the end- 
user is isolated into a few modules. This is, 
of course, good programming practice, but 
it does not ensure dialogue independence. 
Dialogue-oriented procedures are still 
linked to the computational code and can- 
not be modified independently of the rest 
of the program. Knowledge of dialogue de- 
tails are often still woven into the applica- 
tion code, and the task of developing 
:iazgue is still basically a programming 

Dialogue independence is supported by 
the design-time separation of dialogue from 
computational software. This means that 
an interactive application system is com- 
posed of a dialogue component, through 
which all communication between the end- 
user and the system takes place, and a 
computational component, the functional 
processing mechanisms of the application 
system with which the human being does 
not directly interact. These components are 
kept separate as much as possible during 
system design, redesign, and maintenance 
but are bound together for rapid prototyp 
ing and execution. Dialogue independence, 
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however, goes well beyond just separation 
of the system into components and is not 
without difficulties or drawbacks. For ex- 
ample, some dialogue development tools 
(see Section 4) require considerable knowl- 
edge of the style of interaction (e.g., menu, 
use of a mouse) to be anticipated a priori 
in the dialogue interpreter and design tools. 
New interaction styles, techniques, or de- 
vices will then require significant new pro- 
gramming in these parts of the tools, A 
second difficulty stems from having a sep- 
arate role to develop the dialogue compo- 
nent, potentially increasing the need for 
communication among developers and im- 
plementers. New development methodol- 
ogies (see Section 6), however, are emerging 
to address this problem. Further, separa- 
tion of dialogue code from computational 
code can potentially cause a decrease in 
performance, especially from increased in- 
ternal communication among run-time 
components. This can he overcome to some 
extent by new system architectures empha- 
sizing, for example, concurrent execution 
of the dialogue and computational compo- 
nents and by new workstation hardware for 
dialogue support. 

For sequential dialogue, where it is easy 
to delineate a synchronous “turn-taking” 
pattern containing end-user input of re- 
quests, system computation, and system 
output of results, physical separation at 
design time of dialogue-related software 
and data from computational software is 
fairly straightforward. For multi-thread, 
direct manipulation dialogue, where end- 
users directly, visually, and asynchronously 
perform operations on interface represen- 
tations of application objects, separation 
into components can be more difficult to 
achieve. This is because the execution of 
dialogue and computation tends to be more 
closely interleaved, and the two compo- 
nents often share a common data represen- 
tation of the interface and application 
objects. Also in direct manipulation dia- 
logue, there is a need for a closeness of the 
interface to application semantics (e.g., 
for semantic feedback in the interface) 
that works against the separation of dia- 
logue and computation found in dialogue 
independence. This forces trade-offs in 
the system architecture [Hartson 19891. 

Nonetheless, design decisions regarding ap- 
pearance and behavior of the interface can 
often be kept independent of those for the 
software that manipulates the correspond- 
ing data structures. In nearly all cases 
where it can be achieved, the considerable 
advantages of dialogue independence ap- 
pear to outweigh the disadvantages. All the 
systems surveyed in the Appendix exhibit 
some form of dialogue independence. 

1.3 Dialogue Developer: Separation 
of Dialogue Creates a New Role 

For many years, the two main roles in- 
volved in software development were those 
of the application programmer and the end- 
user of the system. These two types, how- 
ever, frequently had severe communication 
problems. The programmer, impatient to 
begin coding, had difficulty understanding 
the end-user’s needs. Similarly, the end- 
user was often not able to articulate re- 
quirements for the system and was baffled 
by the strange “computerese” in which 
the programmer tried to explain what was 
happening. The role of systems analyst 
evolved to provide an understanding of 
both the technical (programmer) and non- 
technical (end-user) sides of the system. 
Also, the role of application domain expert 
emerged to supplement end-user knowl- 
edge about requirements of specific kinds 
of systems. But neither the systems ana- 
lyst nor the application domain expert 
is concerned primarily with the human- 
computer interface. 

In the last few years, human factors spe- 
cialists have become an increasingly impor- 
tant part of computer system development 
teams, as advocates of the end-user’s need 
for an effective interface. This has led to a 
new role that we call the dialogue developer. 
This same role is also called a dialogue 
author, a dialogue engineer, an interface 
engineer, and a dialogue designer. The dia- 
logue developer is a human factors specialist 
concerned with design, implementation, 
and evaluation of the form, style, content, 
and sequencing within human-computer 
interfaces. The dialogue developer’s needs 
and constraints are different from those of 
the programmer. The dialogue developer is 
involved in the entire system life cycle, 



16 . H. R. Hartson and D. Hiz 

including task analysis and system require- 1.5 Dialogue Independence in the Evolution 
mats specification. During design and im- of Interface Management 
plementation of the dialogue, the dialogue 
developer uses an understanding of psy- Evolution of human-computer interface 

chology and human factors principles to management follows a path from a mono- 

build and iteratively evaluate and reline an lithic approach of programmed dialogue 

interface that supports effective human- 
to tool-supported development. Evolution 

computer communication. Often, dialogue began with device independence, which 

independence allows modifications to be 
shields the application programmer from 

made quickly, so that the evaluation and 
low-level device characteristics. The rudi- 

revision cycle can begin again. 
ments of dialogue independence existed at 

Unlike the programmer, the dialogue de- 
least as early as the 1960s. An approxima- 

veloper must be sensitive to cognitive needs 
tion to the concept is to be found in some 

of the end-user. The dialogue developer role 
commercial products of that time. The 

is a cross between a behavioral scientist 
approach was a logical extension to the 

and a systems analyst. As an analogy, the 
notions of language independence, data in- 

role of industrial engineer has been suc- 
dependence, and machine independence, 

cessfully introduced to represent a blend which were then gaining attention. A later 

of skills that bridge the gap between the example is Digital Equipment Corpora- 

psychologist and the machine designer. tion’s TRAX operating system, circa 1975, 
an abortive commercial venture but one 
that included support for separate dialogue 

1.4 Internal and External Dialogue: design. The dialogue language called ATL, 

Separation of Dialogue Creates implemented in TRAX, is a precursor of 

a New Interface Digital’s Forms Management System, pre- 
sented in Section 4. 

Interaction between the end-user and More recent literature contains descrip- 
the dialogue component is accomplished tions of systems for which separation of 
through what we call external dialogue- dialogue from computation was attempted 
the human-computer interface. Separation after the system was implemented. That is, 
of the dialogue component from the com- generalized end-user interfaces were devel- 
putational component creates a new inter- oped to be used as “add-on” front-ends to 
face between these components and a new 
kind of dialogue through that interface. 

existing application systems. Black [ 19771 
was one of the first to develop a front- 

The computational component, which con- end dialogue processor for parameter- or 
tains no mechanism for direct communi- transaction-driven application systems. 
cation with the end-user, engages in a less End-user inputs for complex command 
obvious internal dialogue with the dialogue languages were reduced to a sequence of 
component. This new internal interface choices in a tree-structured representation 
and its special dialogue are the basis for of the grammar. 
communication between the dialogue de- In Bass and Bunker [1981], the interface 
veloper and the application software devel- for a statistical analysis package operated 
oper at design time and are the focal point in both a system command and a job con- 
for binding end-user dialogue and compu- trol command environment, and it applied 
tation together at run time. to both batch and on-line jobs. Essentially 

Internal dialogue is not human under- one interface was adapted to this diversity 
standable at execution time, but its formal of use in a single application. In Wright 
representation at design time is a key to and Brown [1978], the interface was cus- 
dialogue independence. Either the end-user tom coded to a single, specific medical 
interface or the computational software can application. Both these groups began with 
be changed without affecting the other, as an existing application system, which did 
long as both remain consistent with their not have an easily usable interface, and 
common internal dialogue representation. attempted to revise the human-computer 
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dialogue to meet their needs. Thus, these 
systems achieved some separation of dia- 
logue and computation, but not true dia- 
logue independence, since the results were 
not generalizable and extensible to other 
systems or even to other interfaces for the 
same systems. These approaches also did 
not use an overall development approach 
that included consideration of a separate 
computational component. 

The work on a demographic database 
system reported in Evans et al. [1981] is 
somewhat similar. Here an adaptable end- 
user interface provided more than one dia- 
logue to an existing software system as 
needed to suit the varying requirements of 
different end-user communities. Separa- 
tion of the interface code from the rest of 
the system made this possible. 

Display management, which provided 
general development tools for parts of the 
end-user interface, with emphasis on screen 
displays, led to application generators. 
Application generation was-and is-an 
approach for increasing productivity in the 
implementation of interactive systems by 
partially automating code production for 
specific kinds of applications. Application 
generators represent an evolutionary step 
in which the concepts of human-computer 
interface management, especially dialogue 
independence, began to take tangible form. 
In application generators, special-purpose 
high-level languages are used to produce 
display screens (e.g., menus and forms) and 
accept inputs (including command lan- 
guages and data entry). Dialogue inde- 
pendence depends on the appropriate 
separation of resulting code modules. 
Syntactic and lexical details can be isolated 
because other modules do not need knowl- 
edge of how these modules obtain end-user 
inputs. 

From application generators, the evo- 
lutionary path led to user interface man- 
agement systems, or UIMS, and other 
interface development tools. In UIMS, the 
concept of dialogue independence is explic- 
itly recognized and supported. Most UIMS 
are based, at least to some extent, on dia- 
logue independence. This is true especially 
of those for developing sequential dialogue, 

but asynchronous dialogue creates some 
problems in maintaining dialogue inde- 
pendence (see Section 7). Several primarily 
research-oriented systems incorporated 
dialogue independence into their approach 
to application development. Hayes et al. 
[1981] referred to the independence of the 
end-user interface from the application 
program or end-user’s tool as “tool inde- 
pendence.” Many application systems 
(end-user tools) share the development cost 
of this single intelligent interface system. 
Since dialogue independence allows more 
than one dialogue component for a single 
computational component, an application 
system can have two or more very different 
end-user interfaces. Foley [19&31] and Feld- 
man and Rogers [I9821 have captured this 
concept in their Abstract Interaction Han- 
dler (AIH), which contains knowledge of 
interaction styles, allowing their style- 
independent applications to be used with 
more than one kind of interface. Dialogue 
independence has also been an important 
driving force for both theoretical and im- 
plementational development of the Dia- 
logue Management System (DMS) [Ehrich 
and Hartson 19811. In DMS, surface details 
of an interface are decoupled from its deep 
structure through levels of abstraction. 
Work by each of these three research 
groups (COUSIN, GWUIMS, and DMS, 
respectively) is detailed in the Appendix. 

Dialogue independence is less important 
in the context of toolkits, which are librar- 
ies of routines for implementing human- 
computer interface features. Toolkits are 
compatible with dialogue independence but 
do not necessarily support it; maintaining 
dialogue independence is incumbent on the 
application programmer who is using the 
toolkit. 

Numerous systems that represent these 
important steps in the evolution of human- 
computer interface management are dis- 
cussed in Section 4 and in the Appendix. 
They embody various approaches to sepa- 
ration of the dialogue from the computa- 
tional software of an application system, 
basic to the concept of dialogue indepen- 
dence and of human-computer interface 
management. 
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2. STRUCTURAL MODELING OF THE 
HUMAN-COMPUTER INTERFACE 

2.1 Types of Interface Modeling 

There are many kinds of modeling applied 
to human-computer interaction; three of 
the most prevalent are for task analysis, 
structural description, and interface repre- 
sentation. The first kind, task-oriented 
modeling, is used to analyze and describe 
the details of a particular end-user task, 
often by hierarchical decomposition into 
levels of subtasks. Task-oriented models 
are typically used to drive the process of 
design for specific interfaces and often in- 
clude a description of the knowledge an 
end-user has or needs about the task and 
how to perform it [K&as and Poison 19851. 
At detailed levels, task descriptions are very 
dialogue and device dependent, being spe- 
cific to keystrokes and other actions by the 
end-user of a particular interface. Although 
they may or may not be structural models 
of the computing task, task-oriented 
models are not structural models of hu- 
man-computer interaction. Therefore, al- 
though such models and their analysis are 
important to the dialogue development 
process, they are outside the scope of this 
paper and will not be discussed further. 

stances of human-computer interaction; 
that is, they are used by dialogue developers 
to describe details of form, content, and 
sequencing for parts of a specific interface 
design. Methods for representation can be 
based on a structural, descriptive model. In 
such cases the structural model can guide 
the developer during the process of repre- 
senting the dialogue design and can guide 
readers of the recorded design. Structural, 
descriptive models are the subject of this 
section, and interface representation 
schemes are discussed in Section 3. 

Directives from workshops on human- 
computer interaction mandate a need for 
“a model of interaction and a language for 
specifying end-user interactions which 
have been subjected to experience in real- 
world applications” [GIIT 19833. This 
quote refers to the other two areas of mod- 
eling, which we feature as concepts of 
interface management. Structural models 
of the human-computer interface are de- 
scriptive of the general process of human- 
computer communication; that is, they 
theoretically and generically describe the 
structure of end-user exchanges with corn- 
puters. For example, some of these models 
identify dialogue objects, such as prompts, 
inputs, validations, echoes, messages, and 
their relationships. Such models guide a 
dialogue developer and help organize the 
dialogue development process. In contrast, 
interface representations (specifications) are 
schemes for representing particular in- 

Some models tend to overlap both these 
types of models. An example is the Com- 
mand Language Grammar (discussed in 
Section 3.4), which cuts across several 
types of models because of the level of detail 
it is capable of representing. 

Much as it was in the early stages of 
software engineering development, current 
approaches to human-computer dialogue 
design are often ad hoc and unstructured. 
This lack of a framework for the constitu- 
ent parts of human-computer interaction 
leads to dialogue development procedures 
that are also ad hoc and unstructured. In 
many interface development tools (see Sec- 
tion 41, the model of dialogue is implied 
and must be inferred by tool users. In other 
tools, the model of dialogue is explicit and 
provides terminology and organization 
upon which to build dialogue designs. 
Structural, descriptiue modeling of the hu- 
man-computer interface is a fundamental 
concept of interface management, neces- 
sary to understanding the nature of hu- 
man-computer interaction and therefore 
necessary to the interface development 
process. All structural models discussed 
here appear to be for describing sequential 
dialogue. A sequential model, however, 
might be used to describe each thread of a 
multi-thread dialogue, with implicit move- 
ment among threads governed by a high- 
level controller. Even this does not capture 
the true asynchronous nature of a multi- 
thread dialogue. Research on structural 
modeling of asynchronous dialogue is still 
embryonic; it is difficult in large part be- 
cause such dialogue is less structured than 
sequential dialogue. 



2.2 Linguistic Models 

2.2.1 Dialogue as Languages 

Human-computer dialogue, especially se- 
quential dialogue, can formally be modeled 
as the grammar and vocabulary of a 
humanwzomputer ‘*interaction language” 
[Foley and Wallace 19741. Content and for- 
mat, as well as logical sequencing, of se- 
quential dialogue is extremely important in 
determining how well an end-user can un- 
derstand and manipulate the system. To 
understand the idea of dialogue as an inter- 
action language, consider the use of an or- 
dinary command language. Each typed 
command line is accepted, lexically ana- 
lyzed, parsed according to a grammar, rec- 
ognized as either a valid command or an 
error, and acknowledged as either a valid 
command (sometimes implicitly through 
the presentation of the next prompt) or an 
error. The action requested by the com- 
mand, if valid, is performed. There is no 
difficulty in seeing this kind of interaction 
sequence as one involving language that 
can be formally described by a grammatical 
definition. 

Depending on the interaction style, to- 
kens expressing the end-user’s needs can 
each be conveyed in different lexical 
and syntactic forms--menus, programmed 
function keys, touch panels, voice in- 
put/output, graphical picking of icons (e.g., 
by a mouse), and ordinary question-and- 
answer text. For example, a direct manip- 
ulation style such as the mouse can be used 
to build up the same kind of command 
found in a typed command string by select- 
ing a function and then selecting, one at a 
time, its operands and options. The system 
may coach the end-user for each item, and 
the command syntax is not as apparent. 
Nevertheless, even if commands and oper- 
ands are selected in a direct manipulation 
style, each of the resulting tokens can be 
seen as part of a command that is also 
representable in a formal grammar defini- 
tion. A linguistic model of dialogue is useful 
for seeing beyond the surface differences in 
dialogue form and dealing with similar in- 
teraction structures in * uniform manner. 
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The idea of language is involved in both 
structural modeling and interface represen- 
tation, but in different ways. In the first 
case, structural models typically relate to 
the language of the end-user, that is, the 
interaction language in which the human 
communicates with the computer. In the 
other case, an interface representation lan- 
guage used by the dialogue developer is a 
m&language for definining the end-user’s 
interaction language. The idea of viewing 
an end-user interface from a linguistic 
viewpoint-at conceptual, semantic, syn- 
tactic, and lexical levels-was pioneered by 
Foley [Foley 1980; Foley and van Dam 
1982; Foley and Wallace 19741 and appears 
in the GWUIMS in the Appendix. The 
“conceptual level” is the collection of basic 
system goals and functions that an end- 
user must understand. The “semantic 
level” encompasses input operations and 
output presentation techniques. The “syn- 
tactic level” contains specific token se- 
quences to invoke semantic actions, as well 
as specific form and content of output. The 
“lexical level” defines token structure in 
terms of hardware. 

The lexical level of Foley’s conceptual, 
semantic, syntactic, and lexical levels has 
been further decomposed into two levels: 
lexical and pragmatic [Buxton 19831. Fol- 
ey’s lexical level encompasses a broad range 
of diverse features, including composition 
of tokens, spatial display concerns, devices, 
and physical gestures. Buxton’s “lexical 
level” addresses only token composition in- 
formation, whereas the “pragmatic level” 
subsumes issues of layout, devices, and ges- 
tures. Buxton states that this pragmatic 
layer is the main level of interaction be- 
tween a human being and computer system. 
It therefore has the greatest influence on 
an end-user’s perception of the system and 
should be given special attention. 

22.2 A Dialogue Transaction Model 

The “dialogue transaction model” [Hix and 
Hartson 1987; (Johnson) Hix 19851 is a 
descriptive model of the structure of hu- 
man-computer interaction, providing the 
framework for designing, representing, and 
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implementing interfaces using the Dialogue 
Management System [Hartson et al. 19841. 
The model is based on simple relationships 
between formal languages and state ma- 
chines and is empirically derived from ob- 
servations of many interface styles and 
techniques. 

In the dialogue transaction model, a “lin- 
guistic object” is an identifiable entity in 
the observable symbols of dialogue. The 
principle linguistic object is a “token,” an 
abstraction representing the smallest unit 
of end-user input that can have formally 
defined meaning in terms of the application 
or task. An example is a simple data value 
or command that can be entered, say, as a 
series of typed keystrokes, a menu choice, 
the press of a programmed function key, a 
mouse selection of an icon, or a word to a 
voice recognizer. Each linguistic object in 
the dialogue is processed by a correspond- 
ing “constructional object.” A token is pro- 
cessed by a constructional object called an 
“interaction,” which is a dialogue function 
that maps a %w” (uninterpreted and de- 
vice dependent) end-user input to a vali- 
dated and “normalized” token value. Token 
values are validated within interactions ac- 
cording to their lexical definitions and con- 
straints. A normalized token value is a 
device independent and interaction style 
independent value that is globally under- 
stood by the rest of the application system. 

There are some cases in which more than 
one end-user action is required to express 
a token. For example, a command name 
might be typed on an alphanumeric key- 
board or a multidigit numeric value picked 
by a mouse from a picture of a calculator 
keyboard on the screen. Each separate 
character is an instance of the linguistic 
object called a “lexeme,” the smallest unit 
of raw input from the end-user. Lexemes 
are processed by a corresponding construc- 
tional object called an “action,” so named 
because it is one to one with end-user 
actions. 

In addition, tokens themselves can be 
grouped together in semantically related 
sequences called “sentences.” Sentences 
are processed by constructional objects 
called dialogue “transactions.” The set 
of all valid sentences expressible by an 

end-user comprises the end-user’s “trans- 
action language.” Relationships among 
tokens and constraints relating their values 
make up the grammar of the transaction 
language. 

Each constructional object is composed 
of “constituent objects,” such as “display 
objects,” that can be static (completely de- 
fined at design time) or dynamic (not bind- 
able until execution time); “input objects,” 
used to accept, but not validate, end-user 
inputs; and “dialogue computation objects.” 
Dialogue computation objects perform 
computation directly in support of dialogue, 
such as computing default token values for 
an interaction, validating end-user input 
against predefined lexical and syntactic cri- 
teria, or mapping raw token values into 
normalized token values. The hierarchical 
relationship among constructional ob- 
jects-transaction, interaction, and ac- 
tion-serves as an aid in organizing 
dialogue into levels of abstraction, each 
level helping control complexity by hiding 
detail of levels below it. Figure 4 shows a 
typical configuration of constructional 
model objects and their constituent objects. 

The dialogue transaction model is well 
suited for sequential dialogue, which usu- 
ally has a linguistic structure among parts 
of the dialogue relating to commands, pa- 
rameters, selection of choices, data entry, 
and values requiring parsing and/or vali- 
dation. The model has also been applied to 
direct manipulation style dialogue, which 
involves entry of token values by the end- 
user, but is not typically amenable to lin- 
guistic structuring. 

2.3 Nonlinguistic Models 

2.3.7 Dialogue Cd/s 

A “dialogue cell” has been developed 
as a nonlinguistic-based model for describ- 
ing and developing sequential human- 
computer dialogue [Borufka and Pfaff 
1981; Borufka et al. 1981, 19821. A dialogue 
cell consists of four basic elements that 
define the dialogue structure, as shown in 
Figure 5. The “prompt” prepares the sys- 
tem for end-user input actions and indi- 
cates the type of data to be entered by the 
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Figure 4. Dialogue transaction model (adapted from Hix and Hartson [ 19871) 

human. The “symbol” is the input of the 
end-user; it is a construct for specifying 
type and value of that input. The “echo” is 
the system interpretation of the symbol 
entered by the end-user. The “value” is the 
mapping of the input symbol to data usable 
by the application program. In sum, a 
dialogue cell is a unit that describes sequen- 
tial dialogue interaction with an end- 
user, including information to the end-user, 

end-user input action, evaluation of end- 
user input, echoing of end-user input, map- 
ping from end-user input to value, and 
delivery of the resulting value to the 
computational component. 

The four parts of a dialogue cell (prompt, 
P; symbol, S; echo, E; value, V) are con- 
nected as shown in Figure 5. This figure 
also shows the order in which cell elements 
are developed. Cells are initialized through 
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Figure 5. Figure 5. Dialogue cell (from Borufka et al. [1982]). Reprinted Dialogue cell (from Borufka et al. [1982]). Reprinted 
with the kind permission of H. G. Bomfka. 0 1982 IEEE with the kind permission of H. G. Bomfka. 0 1982 IEEE 

an initial value u(i) and produce a return 
value U(O). A dialogue cell for input has a 
nonempty return value [u(o)] for the value 
entered by the end-user. A dialogue cell for 
output has a nonempty initial value [u(i)]. 
Basic dialogue cells (consisting of P, S, E, 
and Vsets) and their elements can be com- 
bined hierarchically to represent sequences 
of human-computer exchanges. In such an 
organization, cells have parameters for 
passing data, much like parameter passing 
in conventional programming languages. 

A dialogue developer creates dialogue, 
but in a “dialogue language,” programming 
it much the same way an application pro- 
grammer would. Dialogue cells provide a 
useful framework for dialogue program- 
ming; this framework revolves around de- 
fining an interface in terms of its basic 
dialogue elements and defining the struc- 
ture for handling interactions at both global 
and local levels. That is, a human-com- 
puter interface is structured into cells, and 
cells are structured into prompts, symbols, 
echoes, and values. Tools provided for a 
dialogue developer include an input/output 
system for accessing graphics devices 
(through the Graphics Kernel System) and 
a dialogue language for specifying data 
structures and control flow. This approach 
may be used conceptually, even in the sb- 
sence of a system for executing dialogue 
cells, to produce human~computer inter- 
faces. 

23.2 interaction Events 

An “interaction event” has been proposed 
as the basis of another nonlinguistic inter- 
face model [Benbasat and Wand 19841. The 
basic premise is that sequential dialogue is 
composed mainly of a series of “interaction 

events.” Such an event is composed of a 
system “prompt,” an end-user “input,” a 
system processing “action,” and “flow con- 
trol” to determine the next interaction 
event. Through the prompt, the system in- 
dicates to the end-user that it wants an 
input. The end-user then provides the in- 
put, and the system responds with an action 
based on the input. System flow of control 
decides which interaction event will follow. 
Other dialogue features include “input 
checks” to validate end-user input, a “help” 
feature invokable by the end-user, an “es- 
cape” mechanism that allows the end-user 
to skip the current input request, and “de- 
fault values” that are responses assumed by 
the system if the end-user provides no in- 
put. The complete “interaction cycle,” com- 
posed of these events, is shown in Figure 6. 
Interaction events are executed by a dia- 
logue generator. A fully functional dialogue 
generator has been implemented, the exe- 
cution of which is based on a tabular form 
of interaction events called “reference 
sets.” 

This model is quite thorough, and ex- 
amples of text, check, action, and flow con- 
trol tables, which the dialogue generator 
processes, are presented in Benbasat and 
Wand [1984]. Interaction events, however, 
appear descriptive only of sequential dia- 
logue. The definition of the end-user input 
seems, at least from the examples, to be 
limited to simple data typing, without pro- 
visions for more complete aspects of input 
definition. Also, the definition of an inter- 
action event encompasses more than just 
the dialogue. The action component and 
some of the flow control component are 
really part of the computational and global 
control components of the system, stretch- 
ing the domain of the model into the 



1. Prompt. 
2. input (get from user or use default). 
3. Escape: if Input = “escape,” then 

1. Set “next event” indicator 
2. End cycle. 

4. Help: if Input = ‘“help,” then 
1. Display additional information 
2. End cycle. 

5. Check: apply input checks. If errors, then 
1. Report errors 
2. End cycle. 

6. Action: invoke related processing. 
7. Flaw Control: set “next event” indicator. 

Figure& lnteraetion cycle (from Benhasat and 
Wand [1984, p. 108]). Reprinted with permission from 
Izsk Benbasat. 

complete human-computer system, not just 
the interface. Despite this, the basic bene- 
tits of this research are sound: practically, 
to produce a dialogue generator to facilitate 
human-computer dialogue implementation 
and, theoretically, to provide a better un- 
derstanding of these dialogues through a 
common set of model components. 

2.3.3 Other Nonlinguistic Mode/s 

In the Graphical User Interface Design En- 
vironment (GUIDE), a UNIXS-based dia- 
logue design system from the University of 
Glasgow [Gray and Kilgour 19851, the com- 
ponents of a hierarchical model of dialogue 
are mapped to the UNIX file management 
system. Dialogue is described in “dialogue 
scripts” that are sections of (mostly tex- 
tual) UNIX files. UNIX directories corre- 
spond to major dialogue units (e.g., for 
processing whole commands). Subdirecto- 
ries represent smaller components such as 
prompts, echoes, and responses. A dialogue 
interpreter executes dialogue by traversing 
a script. In this environment, tools are 
available to an end-user as well as a dia- 
logue developer. 

An interface processor is the basis for 
another human-computer interaction 
model [Edmonds 19821. This interface pro- 
cessor consists of input, output, and dy- 
namic processes, which perform simple 
transformations (e.g., keyboard input to 
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’ UNIX is a trademark of AT&T Bell Laboratories. 

character strings) and determine actions of 
the computer. This model appears to dwell 
on physical processes at the expense of 
providing insight into the essential nature 
or structure of human-computer commu- 
nication. And although the article postu- 
lates that, using this model of an interface, 
“we could clearly arrive at a description 
of the system” and “. arrange that the 
end-user’s model matched construction of 
the interface,” the means for accomplishing 
this was not explained. 

One working group of the Seillac II 
Conference [Guedj et al. 19801 proposed a 
high-level model of interaction based on 
a processing paradigm. A control level 
and a performance level between human 
and computer represent, respectively, 
“what” interaction occurs and “how” it oc- 
curs. Although basically sound, the model, 
because of its high level of abstraction, 
provides little insight into the specific task 
of designing interfaces. 

Norman has proposed four distinct 
stages of human activity during interaction 
with a computer: intention, selection, exe- 
cution, and evaluation [Norman 19841. Be- 
cause each stage has different implications 
for system design, different supporting 
tools are needed. The premise is that the 
four stages can be used to guide screen 
design (e.g., evaluation is essentially a feed- 
back stage, so appropriate information 
should be given to the end-user). Although 
the stages appear realistic, they seem to 
lack specific means for direct application 
to organizing the interface development 
p*lXCS. 

2.4 Architectural Abstractions 

Some models, rather than being directly 
descriptive of human-computer interac- 
tion, are architectural descriptions of how 
the human-computer interface relates to 
the rest of an application system. 

The “Seeheim model” [Green 1985; Pfaff 
19851 of Figure 7 is a run-time architectural 
model of human-computer dialogue. The 
“presentation component” contains device- 
dependent details and specifics of displays, 
as well as interaction style descriptions. 

ACM Computing Surveys, Vol. 2,. No. I, March 1989 
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Application 
Interface 

Model 

Figure 7. Seeheim human-computer interface model (adapted from Green [I%%]). 
Reprinted with the kind permission of Mark Green. 

Figure 8. Dialogue socket (from Coutaz [1X%5, p. 301). Reprinted with permission from 
J. Coutaz (Lahoratoire G&nie Informatique. Ihag, Grenoble, France). 0 1985 IEEE 
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Figure 9. DMS application system architecture 



The “dialogue control component” does 
dialogue processing and sequencing, while 
the “application interface model” contains 
the application view of the interface 
and the interface view of the application. 
Communication with the application is 
via procedure calls and data structures, 
described at an abstract, implementation 
independent level. 

In the “dialogue socket model” (Coutaz 
19851, toolkit abstractions are used to re- 
lieve a dialogue developer from dealing with 
low-level details of interaction. The dia- 
logue socket is a high-level abstraction that 
connects lexical and syntactic specifica- 
tions of the dialogue with an object-ori- 
ented view of lower level input and output. 
As shown in Figure 8, each terminal or 
workstation has its own device-dependent 
dialogue handler that plugs into one side of 
the dialogue socket, while the application 
plugs into the other side. Both sides are 
agents that perform operations on shared 
interface objects. The socket maps dialogue 
from the lexically and syntactically specific 
dialogue handler to the object/operation 
view required by the application. The 
socket becomes a “virtual user” to the 
application. 

Architecture of an application system 
produced using the Dialogue Management 
System [Hartson et al. 19841 approach 
is shown in Figure 9. Logic of the applica- 
tion system is broken into three compo- 
nents. The “computational component” 
contains semantic functionality of the ap- 
plication system but contains no dialogue. 
The “dialogue component” is composed 
of dialogue transactions (see Section 2.2). 
These contain all dialogue functionality, 
logic, and contentl such as displays, 
error messages, and Input processing, The 
dialogue component also contains some 
computation but only computation that di- 
rectly supports dialogue, such as validation 
of end-user input. It does not contain 
any semantic computation of application 
system functionality. The “global con- 
trol component” governs logical sequenc- 
ing among dialogue and computation, in- 
voking dialogue and computation as needed 
at run time. 
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3. REPRESENTATION OF THE 
HUMAN-COMPUTER INTERFACE 

Dialogue developers require a mechanism 
for expressing and recording their designs. 
Numerous techniques have been used to 
support the concept of representation of the 
human-computer interface. Among the ear- 
liest methods were, of course, written pro- 
grams. Since then, other mechanisms have 
emerged, including textual and graphical 
representation languages. Recently, sys- 
tems for dialogue development have begun 
to provide automated tools for interactive 
production of the interface representation. 
This section presents representation tech- 
niques; discussion of tools here is limited 
to illustration of these techniques. Tools 
are discussed in a broader context in 
Section 4. 

3.1 Issues in Representation of the Interface 

3.1.1 Metalanguages 

Metalanguages-languages for represent- 
ing other languages-have several well- 
known problems. They often involve 
notations that are almost unreadable 
to the average person. Formal language def- 
initions meet with resistance, especially 
from those who are more pragmatic, be- 
cause they are so cryptic and often difficult 
to understand. It is sometimes impossible 
to separate metalanguage symbols from 
symbols of the language being defined. Nu- 
merous language representation techniques 
have been developed for programming and 
command languages, including Backus- 
Naur Form (BNF), regular expressions, 
context-free grammars, state transition 
diagrams, and Petri nets. As interaction 
languages evolved, the need for their rep- 
resentation became apparent. Researchers 
tried to use many of these existing means 
of language representation usually with 
only limited success. 

Most well-known methods of language 
syntax representation are useful primarily 
for static programming languages. They are 
not powerful enough for expressing all con- 
cepts of programming languages (e.g., con- 
text sensitivity and semantics), not to 
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mention representation of the dynamic as- 
pects of interaction languages [Jacob 
19831. Even for ordinary sequential dia- 
logue, such representational methods must 
be augmented with other techniques. Lan- 
guage-oriented representational techniques 
are largely inappropriate for representing 
direct manipulation style dialogue. Al- 
though the direct manipulation interface 
paradigm is one of the most popular, it is 
also one of the most difficult to represent, 
largely because of its highly interactive 
nature. 

The problem of interface representation 
goes beyond language concerns. For exam- 
ple, there are many visual and other per- 
ceptual aspects to be represented. BNF and 
state transition diagrams are primarily 
means for representing grammatical rela- 
tionships (e.g., logical sequencing of a com- 
mand and its parameters) among end-user 
inputs. But neither BNF nor state diagrams 
show the process of how, for example, the 
command is solicited by the system (e.g., 
the appearance of a menu or set of graphical 
icons on a screen) and entered by the end- 
user (e.g., by typing a choice code or picking 
an icon) or how the system responds with 
semantic feedback (e.g., changes in the cur- 
sor during dragging). Additional techniques 
are required to represent these. In 
RAPID/USE [Wasserman 19851, for ex- 
ample, arcs of state transition diagrams are 
used to show grammatical connections 
among nodes, but screen appearance and 
input mechanisms within each node are 
represented by a textual dialogue program- 
ming language. 

Jacob [1983] has done an extensive sur- 
vey and thoughtful comparison of tech- 
niques for interface representation and 
specification. Two classes of techniques are 
most prevalent: those based on BNF-type 
definitions and those based on state tran- 
sition diagrams. His comparison of those 
two techniques concludes that state tran- 
sition approaches provide more compre- 
hensible language representations because 
they show time sequencing and surface 
structure of the human-computer interface 
more directly than BNF does. They are 
therefore a better cognitive match to the 
programmer’s and the dialogue developer’s 
mental models. 

Another comparison has shown similar 
results [Guest 19821. One tool, a powerful 
syntax-directed translator (SYNICS), was 
compared to a dialogue description lan- 
guage. SYNICS had an input structure 
based on BNF-like production rules, 
whereas the dialogue description language 
was based on an approach similar to state 
transition diagrams. The results pointed to 
the diagrams of the dialogue description 
language as a much easier method of defin- 
ing dialogue than production rules. The 
explanation for this was that programmers 
found writing production rules more diffi- 
cult than creating transition diagrams. Pro- 
duction rules are declarative, but most of 
the programmers tested tended to think 
and code procedurally. 

3.7.2 Completeness of Representation 

It is desirable to have a physical and nota- 
tional process for recording results of the 
dialogue developer’s mental process of con- 
ceptual development. It appears that no 
single representational technique will suf- 
fice. Rather, a set of techniques is required 
for recording behavioral, structural, and de- 
tailed representation of both visible and 
nonvisible aspects of human-computer 
interfaces. 

Further, these representational tech- 
niques must serve all developer roles 
throughout the system life cycle, applying 
to the behavioral domain of human factors 
experts and end-users, as well as the con- 
structional domain of system developers. 
Ideally, the techniques should have a sound 
formal basis, be independent of tools 
through which they may be implemented, 
and be complete in their ability to represent 
interfaces. For the dialogue developer, de- 
tails can be overwhelming: end-user navi- 
gation and sequencing, grammar and other 
syntactic constraints, lexical rules for in- 
put, appearance of displays (e.g., graphics, 
positioning, clearing screen, character- 
by-character cursor movement, echoes, 
highlighting, color, movement of objects), 
message content and format, device and 
interaction style dependencies, data flow, 
data typing, semantics, conditional and 
adaptive behavior, scrolling, paging, win- 
dowing, and SCI on. 
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Representational needs even extend to 
the development process itself. Several 
kinds of information are usually lost in the 
development process but are needed during 
maintenance such as: Why was a particular 
design decision made? How much time did 
developers spend on various parts of the 
system, especially the interface? What is 
the version history of a particular feature? 
How can the satisfaction of system require- 
ments be traced to specific system 
modules? 

The problem of completeness in interface 
representation is still unsolved, but new 
techniques such as scenarios and proto- 
types are successfully being used to aug- 
ment existing, more formal methods. 

3.2 Techniques for Representation of 
Sequential Dialogue 

3.2.1 BNF Representation 

One of the best known systems for repre- 
senting the syntax of a language is the BNF 
[Naur 19631. BNF, however, has several 
deficiencies in its power to represent lan- 
guages, particularly its inability to repre- 
sent context sensitivity. In addition, BNF 
is difficult for humans to understand. It is 
a highly structured, hierarchical metalan- 
guage that results in a “fan-out” problem. 
That is, nonterminals in an expression can 
be replaced by more nonterminals through 
several successive iterations before a ter- 
minal symbol is finally reached. This multi- 
level tree structure is difficult for human 
beings to follow, since by the time the 
leaves (terminals) are reached, the root 
(highest level expression) and the language 
structure may long be forgotten. It is con- 
sequently very difficult to visualize sen- 
tences in a language by looking at its BNF 
definition. 

Nonetheless, BNF has been used exten- 
sively in representation of human-corn- 
puter interfaces. Simulation systems have 
been developed that accept as input BNF 
production rules with associated actions 
and produce a prototype of the human- 
computer interface [Hanau and Lenorovitz 
198&, 1980b]. 

Extended LL(1) grammars with added 
graphical information have been used as 

interface representations [Olsen 1983; 
Olsen and Dempsey 19831 in the SYN- 
GRAPH system for automatically gener- 
ating interactive systems. SYNGRAPH 
(discussed in Section 4) generates the end- 
user interface for interactive graphics ap- 
plications. The BNF-like definition of the 
interaction language as well as Pascal code 
that is invoked to perform the related se- 
mantic actions are both used as input to 
the generator. Output is a recursive descent 
parser for the interaction language, as well 
as a scanner and a screen manager. SYN- 
GRAPH has produced the notion of an 
“interactive pushdown automaton” as the 
basis for describing the interface syntactic 
components [Olsen 1984b]. Although this 
system relieves a developer of having to 
code the interface, the grammar that de- 
scribes it must still be produced. 

MIKE, an outgrowth of SYNGRAPH, 
can be used to generate text-based inter- 
actions; interaction languages are repre- 
sented as Pascal procedures and functions. 
Representing the interface with these 
expressions differs significantly from the 
SYNGRAPH grammatical approach and 
has proved to be much easier to learn. 

One variant of BNF, adapted specifically 
to represent interaction languages rather 
than static languages, is the multi-party 
grammar [Shneiderman 19821. Features 
that differentiate this extension from 
standard BNF are the labeling of nonter- 
minals with a party [i.e., either human (H:) 
or computer (C:)] identifier, assignment of 
values to nonterminals when appropriate, 
and definition of a nonterminal that will 
match any input string if no other parse of 
that input is successful. The grammar per- 
mits terminal strings entered by the end- 
user to be fed back in a later part of the 
dialogue. Other characteristics peculiar to 
interactive displays, such as visual features, 
are also specifiable. A small example for an 
“open file” command is shown in Figure 10. 
Note the nonterminals (in ( )), labeling of 
nonterminals (with H: or C:), and the dia- 
logue variable (FILENAME) used in the 
computer’s “OPEN-ACK” response to the 
human. 

BNF-based representation methods 
should not be considered structural models 
of human-computer interaction in the 
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<CM*> :: = < H : OPEN, cc : OPEN-ACK> 
< H : OPEN> :: = OPEN c” : “LENAME> 
< c : OPEN-ACK, :: 3 ,<H : Fn.ENAME>, IS NOW OPEN 

Figure 10. Example using multi-party grammar rep- 
resentation. (adapted from Shneiderman [1$X42]). 
Reprinted with permission from Ben Shneiderman. 
0 1982 IEEE 

sense that we defined such models in 
Section 2. The metalanguage symbols of 
BNF do not provide a structural organiza- 
tion or explanation of the nature of this 
interaction. BNF notation (e.g., the multi- 
party grammar) is, rather, a syntactic no- 
tation for representing specific instances of 
a dialogue. 

3.2.2 State Transition Diagram Representation 

State transition diagrams (essentially finite 
state machines) constitute another formal 
representation technique frequently used 
for language definition. Whereas the pri- 
mary means of creating BNF descriptions 
is textual, state transition diagrams are a 
graphical means of representing sequential 
dialogue, using graph nodes for states and 
arcs for sequencing of transitions among 
states. Since conditions upon which tran- 
sitions are made depend on end-user in- 
puts, state transition diagrams can be used 
for representation of interaction languages. 

One of the earliest uses of state transition 
diagrams for language representation was 
in specification of a compiler for a program- 
ming language [Conway 19631. Actions as- 
sociated with each state transition indicate 
what is to happen when the transition oc- 
curs. An early use of state transition dia- 
grams for interface representation is found 
in Newman [ 19681. Use of state transition 
diagram representations for the design of 
interactive computer systems [Parnas 
19691 evolved in response to the increased 
need for consideration of human interac- 
tion in the system design process. In par- 
ticular, state transition diagrams specify 
appropriate messages at each state of an 
interactive system. Augmented transition 
network (state transition diagrams supple- 
mented with stacks) grammars have been 
used to analyze natural language structure 

[Woods 19701. Current research has now 
progressed far beyond this point, but these 
ideas were quite novel when first proposed. 

Wasserman’s RAPID/USE [Wasserman 
1980, 1982, 1985; Wasserman and Shew- 
make 1985; Wasserman and Stinson 1979; 
Wasserman et al. 19861 is a system for 
representing not only the end-user inter- 
face but an entire interactive information 
system. Transition diagrams are used to 
describe the language of the end-user and 
for production of rapid prototypes [Was- 
serman and Shewmake 19821. Jacob [1985] 
presents the Military Message System 
(MMS) as an example of a system devel- 
oped using state transition diagrams, with 
associated actions, as a formal representa- 
tion technique for its interface. These rep- 
resentations are then converted into system 
prototypes. In both these approaches the 
machine representation of the state tran- 
sition diagrams is an interpretable textual 
encoding in a “node and arc” language. 

Figure 11 shows an example of a USE 
transition diagram. Transition diagrams 
can be produced, using an interactive tran- 
sition diagram editor, and then be auto- 
matically converted to the skeleton of the 
textual code (i.e., the node names and con- 
trol flow). Contents of the nodes are then 
filled in by a dialogue developer using a 
dialogue programming language. Figure 12 
shows some of the corresponding textual 
encoding for Figure 11. 

Jacob’s [ 19851 representation of dialogue 
is heavily based on semantic, syntactic, and 
lexical levels, using separate diagrams for 
each level. State transitions are associated 
with an input or an output token, but not 
both. That is, output is treated as a separate 
token, rather than as a special action, al- 
lowing representation of output dynamics. 
Output tokens include prompts, acknowl- 
edgments, and ethos. Through a process of 
stepwise refinement, states are added to the 
state transition diagrams, making repre- 
sentation of the interface more precise. The 
resultant representations are detailed and 
voluminous, providing device independence 
and screen and cursor control. Messages 
can be constructed independently of node 
definitions. Subdiagrams are used to con- 
trol complexity by providing modularity 
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Figure 11. USE transition diagram (from Wasserman and Shewmake [I!%, p, 1%)). Re- 
printed with permission from the authors and Ablex Publishing Corporation. 

and an ability to decompose designs into 
levels of abstraction. Both Wasserman’s 
and Jacob’s approaches are presented in 
more detail in the Appendix. 

A representation technique that is simi- 
lar to state transition diagrams was used to 
describe primarily sequential dialogue in 
early versions of the Dialogue Management 
System. The SUPERGory Methodology 
And Notation (SUPERMAN) embodies 
both data flow and control flow in a unified 
graphical system representation [Yunten 
and Hartson 1985). SUPERMAN repre- 
sents design of an interactive system with 
a “supervisory structure,” which is a net- 
work of “supervisory cells.” A supervisory 
structure is shown in Figure 13. Each cell 
contains a single “supervisory function” 
and a “supervised flow diagram” (SFD) rep- 
resenting both control flow and data flow 
among its dialogue and computational 
functions. 

The graphical function symbols of 
SUPERMAN reflect SUPERMAN’s em- 
phasis on separation of dialogue from com- 

putation. A circle inscribed in a square is 
a dialogue-computation function, always 
a supervisory function, that eventually 
decomposes into pure dialogue and pure 
computation. A dialogue transaction, rep- 
resented by a circle, provides communica- 
tion between human and computer and is 
implemented by a dialogue developer. A 
computational function, represented by a 
square, is a software function that performs 
only computation and is implemented by 
an application programmer. Because the 
notation used in SUPERMAN to represent 
the design is a graphical programming lan- 
guage, an executable form of an application 
system’s control structure and dialogue 
can be directly compiled from the super- 
vised flow diagrams. This graphical repre- 
sentation is also interpreted for rapid 
prototyping. 

Functional requirements of human-com- 
puter interaction in Casey and Dasarathy 
[1982] are expressed in terms of a finite 
state machine (or state transition diagram). 
Their taxonomy of interfaces is separated 
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diagram irg entry start exit quit 

node start 
es, 12,w, c_‘lnteractive Restaurant Guide’.sv, 
rQ5, ‘Please make a choice: ‘, 
r+ZclO. ‘1: Add new restaurant to database’, 
r+z,c10; 
r+*,c10. 
*+*,c10, 

node help 
cs, r5,eo. 

r+1, co, 

r+1, CO, 

r+1, CO, 

r+1, CO, 

r+*, co, 

‘2: Give review of a restawant’, 
‘3: Read reviews for a given restaurant’, 
‘4: Help’, r+Z,clO, ‘5: Quit’. r+3.c5, ‘Your 

choice:‘, mark_A 

‘This program stores and retrieves infor- 
mation on’, 
‘restaurants, with emphasis on San Fran- 
cisco.‘, 
‘You can add or update information 
about restaurants’. 
‘already in the database, or obtain infor- 
mation about’, 
‘restaurants, including the reviews of 
others.‘, 
‘To continue, type RETURN.’ 

node error 
r$-l,rv, ‘Illegal command.‘, SY, ‘Please type a 

number fmm 1 to 5.‘, 
1% ‘Press RETURN to continue.’ 

node clean 
I$ - l,ClJ$,Cl 

node wakeup 
r$,cl,rv,‘Please make a cboice’,sv, tomark_A 

node quit 
cs, ‘Thank you very much. Please try this program 

again’, 
nl. ‘and continue to add information on restau- 

IB”tS.’ 

arc ~tsrt single-key 
on ‘1’ to (addnew) 
on ‘2’ to (giverev) 
on ‘3’ to (readrev) 
on ‘4’.‘?’ to help 
on ‘5’ to quit 
alarm 30 to wakeup 
else to error 

arc (addnew) 
skip to SUR 

are (readrev) 
skip to start 

are (giverev) 
skip to start 

Figure 12. Some corresponding textual code for Fig- 
ure 11 (from Wasserman and Sbewmake 11985, P. 
2OOjl. Reprinted with permission from the authors 
and Able Publishing Corporation. 

into classes of stimuli and responses. The 
addition of checkpoints to validate input 
and timers for performance measurements 
extends the model. Application-specific vo- 
cabulary and semantics are used to specify 
system requirements in a Real-Time Re- 
quirements Language (RTRL). A compar- 
ison of RTRL to an informal English prose 
version of the requirements specification 
for a system showed RTRL to produce 
more complete, consistent specifications. 

General Transition Networks (GTNs) 
also use state transition diagrams as the 
basis for describing an interface [Kieras 
and Poison 19831. GTNs have been pro- 
posed as a method both for describing the 
behavior of an interactive system and for 
developing a simulation of its end-user in- 
terface. Nodes of GTNs represent states, 
arcs are labeled with both conditions and 
actions, and examination of the conditions 
is done in a specified order to trigger tran- 
sitions. The GTN’s key feature, according 
to Kieras and Poison [1983], is its ability 
to describe hierarchies of modes or states 
of the system. The work done with GTNs 
appears to be oriented mostly toward task 
analysis. Although Kieras and Poison 
[I9831 claim that CTNs are powerful 
enough to describe very complex systems 
easily, the example given in their paper is 
“a simplified form of portions” of a specific 
word processor. 

State diagrams are also used in SYNICS 
to represent dialogue and global control 
[Edmonds 19811. Many others have used 
state transition diagrams to represent the 
human~computer interface [Denert 1977; 
Dwyer 1981; Green 19811. The latter uses, 
however, have been theoretical and appar- 
ently have not applied the diagrams to any 
sizable real-world application. 

Interface representation methods that 
use state transition diagrams should not be 
considered structural models of human- 
computer interaction as we described such 
models in Section 2. Just as a BNF meta- 
language does not provide a general, struc- 
tured organization of the nature of this 
interaction, neither do the symbols used in 
state transition diagrams. Like BNF, the 
diagrams are used to represent specific 
dialogue instances. They are actually a 
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graphical notation for representing control 
flow. Without the guidance of a structural 
model, however, semantic control is often 
mixed with lexical and syntactic control at 
the same level of abstraction. This can 
cause complexity problems that adversely 
affect dialogue independence. 

3.23 Dialogue Language Representation 

Dialogue can also be effectively represented 
by a high-level “dialogue programming lan- 
guage.” Such languages have constructs for 
representing dialogue-specific features, 
such as visual attributes, positioning, and 
devices. For example, a node of a 
RAPID/USE state transition diagram can 
represent a screen of an alphanumeric ter- 
minal device. The display and end-user in- 
put for a specific screen are described in a 
textual language, one line at a time. To 

illustrate, 

12, rv, ~80, ce 
‘Interactive Restaurant Guide’, sv 

denotes that at row 2, in reverse video and 
centered within 80 columns, the screen is 
to display “Interactive Restaurant Guide” 
(as a title for a menu) and then reset to 
standard video. 

IBM’s Interactive System Productivity 
Facility (ISPF) relies almost entirely on a 
dialogue programming language as a means 
for representing dialogue. Each “panel” 
(screen) is a procedure written in a textual 
language designed for representing dia- 
logue. A panel can call and be called by 
other procedures. A typical panel has a set 
of actions it performs when the panel is 
entered, a body that produces the specific 
dialogue of the screen, and some actions it 
performs as it leaves the panel. Panels are 
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invoked by calling a display service (e.g., a Eventhandler event-handler-name Is 

SELECT service for a menu panel). The Token 

design for functions such as input valida- 
token-name event-name; 

tion, end-user navigation among fields of a : 
form, and editing of input values is largely Var 
predetermined and hard wired. type variabkname = initialLvalue; 

3.3 Techniques for Representation of 
Asynchronous Dialogue 

3.3.1 Event-Based Representation 

Most techniques for representing asyn- 
chronous dialogue are variations of event- 
based mechanisms (see Section 7). Green 
[1986] surveyed three formal classes of 
techniques for describing dialogue, based 
generally on transition networks, gram- 
mars, and events. Green concludes that 
events have the greatest descriptive power, 
a conclusion consistent with the fact that 
event-based mechanisms can be used to 
represent both sequential and asynchron- 
ous dialogue. 

Design of the human-computer interface 
using the University of Alberta UIMS 
[Green 19851 is built around representation 
through event handlers that are described 
in an “event language” similar in syntax to 
the C programming language. The text of a 
program written in the event language con- 
tains at least one event handler definition. 
At run time, instances of the event handler 
are created. The skeleton for an event han- 
dler declaration is shown in Figure 14. The 
first part of the declaration indicates input 
and output tokens the handler can process. 
The second section consists of declarations 
of local variables, and the third section 
contains event declarations, each of which 
consists of one or more C statements. The 
visual part of the interface is represented 
through use of an interactive layout facility 
built on a window-based graphics package. 
The University of Alberta UIMS is based 
generally on the Seeheim model (see Sec- 
tion 2.4). Its event-based interface repre- 
sentation-because it is so similar to C- 
may not, however, be preferable to simply 
coding the representation directly in C [Hill 
19871. This would seem to limit its usage 
to C programmers, a requirement that ex- 
cludes many dialogue developers. 

Event e”e”tLname:typpe ( 
statements 

I 
end event-handler-name: 

Figure 14. Skeleton of an event handler declaration 
(adapted from Green (19851). Reprinted with the kind 
permission of Mark Green. 

An approach to representing multi- 
thread, event-based dialogue is based on A 
Language for Generating Asynchronous 
Event handlers (ALGAE) [Flecchia and 
Bergeron 19873. ALGAE uses an event- 
based, message-passing mechanism within 
a multiprocess execution environment for 
concurrency. An event is represented by a 
structure that has a type and a value. In- 
terruptible dialogue is accomplished by 
stacking. The ALGAE run-time environ- 
ment queuing system handles the message 
passing. As in the University of Alberta 
UIMS, event specifications are written in a 
programming-like language and are used to 
generate event handlers, which are used to 
accept each kind of input. 

The Event-Response System (ERS) has 
been used as the basis for represent- 
ing the syntax of multi-thread dialogues 
[Hill 19871. An Event-Response Language 
(ERL) is based on representation of system 
responses to events that occur as the result 
of end-user actions. Complex dialogue is 
represented as a set of simpler dialogues 
running in parallel, using a compact, struc- 
tured representation technique based on 
production rules. An end-user input event 
can render a production rule “firable,” and 
searching for firable rules determines state 
transitions within deterministic finite au- 
tomata. The ERL has been incorporated 
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into the Sassafras interface development 
system. 

3.3.2 Other Approaches 

An unusual paradigm for representation of 
the interface is embodied in the “by dem- 
onstration” mechanism of the Peridot 
UIMS [Myers 19871. The dialogue devel- 
oper represents how input devices are to be 
handled by showing examples of their use. 
Sample values for parameters and actions 
allow Peridot to infer the general input 
operation and generate the corresponding 
code automatically. Peridot can be used to 
represent devices found in direct manipu- 
lation interfaces, including mouse and 
touch tablet. 

The User Interface Development Envi- 
ronment WIDE) [Foley et al. 19881 uses a 
knowledge base for representing the hu- 
man-computer interface. Several “sche- 
mata” or “frames” are used for the 
knowledge base, including schemata for ob- 
jects, actions, parameters, pre-conditions, 
and post-conditions. Pre-conditions repre- 
sent predicates that must be true for an 
action to occur, and post-conditions exist 
after an action is executed. Transfor- 
mations can be applied to the representa- 
tions in the knowledge base to generate 
alternative interfaces with equivalent 
functionality. 

3.4 Other Techniques for Representation 

An approach to interaction language design 
and representation of interactive computer 
systems has been introduced in the Com- 
mand Language Grammar (CLG) [Moran 
19811. Even though the CLG model is a 
task-oriented model and a structural model, 
it can also serve as a model for dialogue 
representation. In fact, the CLG formalism 
creates a framework for describing many 
aspects of the end-user interface, not 
merely representation of the interaction 
language itself. The CLG partitions an in- 
terface into three major components, as 
shown in Figure 15. Each component is 
divided into levels, each of which is a re- 
finement of previous levels. At the highest 
level, the “conceptual component” contains 

Conceptual Component: Task Level 
Semantic Level 

Communication Component: Syntactic Level 
Interaction Level 

Physical Component: (Spatial Layout Level) 
(Device Level) 

Figure 15. Levels in the CLG (from Moran [1981, 
p. 61). Reprinted with the kind permission of Thomas 
P. Moran. 

the tasks (“task level”) and abstract con- 
cepts (“semantic level”) from which the 
system is derived. The “communication 
component” is composed of the command 
language (“syntactic level”) and the dia- 
logue structure (“interaction level”). At the 
lowest level, the “physical component” con- 
tains the descriptions of the input/output 
devices and display graphics (“spatial lay- 
out level”) and all other physical features 
(“device level”). 

The description of each level contains 
procedures, written in a very high-level 
programming-language-like notation, that 
describe all tasks addressed by the system 
in terms of the actions available at that 
level, through a process of stepwise refine- 
ment. A small message-processing system 
is given as an example; its description at 
all levels takes many pages. 

Moran [1981] describes how CLG can be 
considered from three different viewpoints. 
A linguistic view sees CLG as an analysis 
of the structure of a system’s interface (i.e., 
a structural model). A psychological view 
sees CLG as describing the knowledge an 
end-user has about a system (i.e., a task 
analysis model). A design view sees CLG as 
a representation mechanism for system de- 
sign (i.e., a representation model). CLG 
thus overlaps all three types of modeling 
associated with human-computer inter- 
faces. The CLG representation is thorough, 
providing a representation of an interactive 
system ranging from the end-user’s cogni- 
tive level to the system’s device level. It 
appears, however, to be primarily theoreti- 
cal in nature and not executable. Its major 
contribution is its thorough addressing of 
many issues involved in describing an end- 
user interface at several levels. In Browne 
et al. [ 19861, CLG is extended to make the 
interface model sensitive to context and 
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end-user characteristics, such as expertise 
level. . 

Another proposal for formal representa- 
tion of human-computer interfaces is use 
of first-order logic using the rule-based lan- 
guage Prolog [Roach and Nickson 19831. 
This method of modeling, designing, and 
developing dialogues allows a uniform syn- 
tactic and semantic description of the in- 
terface. Because Prolog translators are 
available, this representation is also exe- 
cutable and allows for rapid specification, 
implementation, and modification of an in- 
terface. An application example involving 
representation of a carrier-based air traffic 
control system took about 100 Prolog rules 
versus more than 5000 lines of Pascal code. 
Although the idea of using Prolog as both 
a representation and an implementation 
tool is interesting, the complexity of learn- 
ing to create Prolog programs needs to be 
investigated; first-order logic is certainly 
not common knowledge. 

In GUIDE [Granor and Badler 19861, 
dialogue is represented interactively in 
terms of contexts. A “context” contains 
interaction tasks, application-generated 
pictures, application actions, and control 
decisions. Actions are invoked by use of 
tasks. Contexts are sequenced by decisions 
and may be stacked. 

3.5 Representation as Part of Interface 
Evaluation 

Interface representation has also been used 
to facilitate experimentation with human 
factors in interactive displays [Feldman 
1981; Foley 19811; languages and metrics 
for interface representation and ergonomic 
evaluation [Bleser 1981; Reisner 19811 are 
of particular interest. Because metalan- 
guages (e.g., BNF based) have been used to 
provide formal representations of at least 
some aspects of interfaces, research has led 
to the use of formal grammar description 
as a prediction mechanism for use in eval- 
uating alternative human-computer inter- 
face designs [Bleser and Foley 19823 
Reisner 1981,1982]. For example, Reisner’s 
action grammar is used to describe both 
cognitive and input actions, which are then 
converted to a predicted performance time 
or error representation. Sentences are cre- 
ated that represent particular tasks or end- 

user classes (e.g., “move cursor” = time to 
move cursor). Then, a set of “prediction 
assumptions” is compared to the sentences 
to determine resultant comparative times. 
Metrics are applied to the grammar itself 
to compare alternative interface designs 
and to find inconsistencies that might. 
cause end-users to make mistakes. Such 
evaluations using formal language repre- 
sentations allow early identification of de- 
sign inconsistencies that are likely to lead 
to end-user errors and allow analysis of the 
interface for incorporation of human fac- 
tors principles [Reisner 1983a, 1983b]. Hu- 
man factors experiments are used to 
validate this analysis. 

Another formal approach is intended 
specifically to describe the human factors 
of an interface [Bleser and Foley 1982; 
Foley 19811. It defines the lexical and syn- 
tactic aspects of both the input and output 
of an interface. The input definition defines 
tokens and their relationships, whereas the 
output definition defines screen character- 
istics and content. Once the interface is 
formally represented, evaluative metrics 
are applied to the representation in order 
to determine potential design flaws. 

Rule-based “expert” dialogue tools 
[Fischer 1982; Roach et al. 19821 guide 
dialogue developers in evaluating the appli- 
cation of human factors considerations, 
graphic design principles, and guidelines 
for effective communication in the design 
of their interfaces. In DIADES [Hoffmann 
19851 the editor used for producing inter- 
face design representations also collects 
dialogue design decisions. Human factors 
design guidelines, stored in a knowledge 
base, are used by a Prolog-based expert 
system to evaluate quantitatively how well 
the guidelines are met by a specific design. 
Also, the Rapid Intelligent Prototyping 
Language (RIPL), discussed in the Appen- 
dix, has both a consultation and an evalu- 
ation expert system that use a knowledge 
base derived from the Smith and Mosier 
[ 19861 dialogue design guidelines. 

4. INTERACTIVE TOOLS FOR HUMAN- 
COMPUTER INTERFACE DEVELOPMENT 

People working in the field of human- 
computer interaction seem to be very tool 
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oriented. Many recent articles in the liter- 
ature describe tools for development and 
testing of human-computer interfaces. 
This is undoubtedly the first wave of an 
even more comprehensive phenomenon, re- 
lated to the fact that people who are devel- 
oping human-computer interfaces for 
others are not content to have poor quality 
interfaces for their own work. 

Interactive tools for human-computer 
interface development are often used to 
automate the process of interface represen- 
tation. Dialogue developers also use these 
tools for other activities, including proto- 
typing, evaluation, analysis, and implemen- 
tation. Outputs from these tools are usually 
either program code that can be executed 
to produce the interface or declarative de- 
scriptions (e.g., database records) that can 
be interpreted to produce the interface. In- 
terface development tools often include 
state diagram editors, graphical editors, 
text editors, database management sys- 
tems, and even rapid prototypers. Unfor- 
tunately, the tools that are easiest to use 
are often the most limited in the kinds of 
interfaces they produce. Some tools were 
presented in Section 3 as examples to high- 
light various representation techniques 
only. This section presents tools in a 
broader context. 

Terminology for interface development 
tools has not yet stabilized. Drawing on the 
most common use of the terms in the lit- 
erature, we shall use the generic term tool 
to refer to anything from a complete inter- 
face development environment to a library 
routine for a single small interface feature. 
A User Interface Management System 
(UIMS) is a set of high-level interactive 
programs for designing, prototyping, exe- 
cuting, evaluating, and maintaining end- 
user interfaces, all integrated under a single 
dialogue development interface. Unfortu- 
nately, the UIMS appellation has been 
devalued by casual use, referring to al- 
most any software tool related to human- 
computer interfaces. The term is now used, 
for example, to refer to a program that 
merely helps build screens or that only does 
interface prototyping or involves interac- 
tive graphics. Finally, a toolkit is a library 
of callable program routines to implement 
lower level interface features (e.g., display 

an object, accept input) that can be called 
from within a UIMS or from any other 
program code. 

4.1 Requirements for Interface Development 
Tools 

As experience with tools for developing 
human-computer interfaces increases, 
more will be understood about the require- 
ments for such tools. Some desired char- 
acteristics for interface development tools 
include the following: 

l Functionality. Human-computer inter- 
faces are very complex, consisting of a 
large variety of features and devices. 
Tools must therefore be able to produce 
complex interfaces containing this vari- 
ety of features and devices. Functionality 
refers to what a tool can do, that is, what 
interface styles.and techniques it can be 
used to produce and what input/output 
devices can be used in the interface a tool 
produces. The greater the functionality 
of a tool, the more types of interface 
features and devices it can be used to 
incorporate into the application inter- 
faces it produces. 

l Usability. Interactive tools for develop- 
ing human-computer interfaces are com- 
plex software systems, often in relation 
to their functionality. Such tools for 
developing human-computer interfaces 
have complicated human-computer in- 
terfaces themselves. Usability of these 
tool interfaces is an important issue for 
productivity and satisfaction of the dia- 
logue developers who use them. 

l Completeness. A requirement that car- 
ries over directly from techniques (see 
Section 3.1) to tools and related to func- 
tionality, completeness is elusive. Con- 
sider a small detail such as a field for a 
“date” value in a MM/DD/YY format. 
There are lexical rules (e.g., ‘DD’ must 
be an integer with a value between 1 and 
31), syntactic rules (e.g., governing the 
order of MM, DD, and YY inputs), and 
semantic rules (e.g., if MM = 02, then 
01 I DD 5 28, except for leap year). This 
one small data field of one screen of a 
whole interface exemplifies the large 
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number of details that must be repre- 
sented by a dialogue developer. 

l Extensibility. Because absolute com- 
pleteness is unattainable in interface de- 
velopment tools, tools must be extensible. 
Dialogue development tools are usually 
more specialized than programming lan- 
guages. Although this specialization 
makes a tool easier to use for its specific 
purpose, it narrows the scope of that 
tool’s applicability. Since the possibilities 
for human-computer interfaces are un- 
limited, specific tools cannot address 
every need. There are at least two ways 
tools can be made extensible to handle 
new interface features, interaction styles, 
and devices: The tools themselves can 
be easily modified, or the interface rep- 
resentations produced by the tools can 
be easily modified. 

l Escapability. In cases in which the tool 
is inadequate and extension is not feasi- 
ble (e.g., a rarely used interface feature), 
it should be possible to escape from the 
tool and use ordinary programming to 
produce the interface feature. Use of tools 
must therefore be compatible with use of 
programming in the same environment. 
Without this ability to escape from the 
tools, the unavoidable limitations of the 
tools become dead ends for the dialogue 
developer. 

l Direct manipulation. Direct manipula- 
tion is particularly desirable in the dia- 
logue developer’s interface for interface 
development tools. The’ dialogue devel- 
oper works directly with visual (graphical 
and/or textual) representations of the 
end-user’s task-related objects-“visu- 
ally programming” [MacDonald 1982]- 
and results are immediately visible and 
easily reversible. As indicated by Backer 
et al. [1986], the problem-oriented visu- 
alization offered by a direct manipulation 
style tool interface aids in understanding 
of problems. A taxonomical survey of vis- 
ual programming, programming by ex- 
ample, and program visualization is given 
in Myers [1986]. 

l Integration. A set of tools for develop- 
ing interfaces should have a single inte- 
grated interface for accessing all the tools 
and a uniform interface style across all 

tools. Further, tools need to have a com- 
mon output representation to assure 
composability of tool products within an 
interface. An underlying database man- 
agement system is a desirable repository 
for storing tool output in a common 
format. 

l Locality of definition. For consistency in 
an interface under development, it is de- 
sirable for a dialogue developer to be able 
to give localized definitions that apply to 
large parts (or all) of an interface. For 
example, it is useful to represent once, 
for all menus in the application system, 
a standard format of the screen title and 
layout, color, and position of various 
types of objects on the screen. If an at- 
tribute is modified, updating a single rep- 
resentation in a single place can 
accomplish the change for the entire ap- 
plication system. These capabilities often 
are found in tools as a design template or 
“shell,” giving default or initial values for 
various object attributes. Object-oriented 
implementation environments (see Sec- 
tion 4.5) are excellent for supporting this 
capability because of their strong inher- 
itance properties within a hierarchical 
structure of object definitions. 

l Structured guidance. Without help 
from the tools in organizing the interface 
development process, a dialogue devel- 
oper can be confronted with a confusing 
mass of detail. Because a structural, de- 
scriptive model of the human-computer 
interface (see Section 2) explains the ele- 
ments and their relationships in the in- 
terface, it is also useful as a framework 
for interface representation. Other means 
of developer guidance, such as built-in 
tutorials, computer-aided instruction, 
and on-line help, are also desirable. Such 
materials should include liberal use of 
examples. 

4.2 Application Generators and Other 
Early Tools 

Some of the early tools for human-com- 
puter interface development could be clas- 
sified as application generators and display 
managers. These tools, although addressing 
the problems of interface design, lack a 
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generality in approach. Application gener- 
ators and display managers are not based 
on a system development methodology, nor 
do they involve comprehensive dialogue 
modeling. In addition, they are typically 
oriented toward the development of a spe- 
cific format or interaction technique (e.g., 
menus or forms). They are also often lim- 
ited to specific devices and tailored to 
certain classes of applications. 

IBM’s Interactive System Productivity 
Facility (ISPF) [1983, 19851 and Develop- 
ment Management System [1983] are 
archetypical examples of commercial form- 
filling and menu-oriented display manage- 
ment tools. ISPF, tailored specifically to 
the characteristics of the IBM 3270 display 
terminal and MVS/TSO or VM/CMS op- 
erating systems, is used to construct display 
“panels” (screens) for interactive applica- 
tions. It provides services to support dia- 
logue in various host environments. When 
used in conjunction with the Program De- 
velopment Facility (PDF), ISPF provides 
an application generator. 

Formerly (before October 1983), ISPF 
and PDF were combined in a predecessor 
product called the System Productivity Fa- 
cility (SPF) [Maurer 19831. Dialogue man- 
aged by ISPF consists mainly of selection 
panels (menus), functions (command pro- 
cedures such as TSO CLISTs, CMS EXEC 
files, or programs written in PL/I, ASM, 
COBOL, or FORTRAN) and data entry 
panels (form filling). The menu is displayed 
and the end-user’s choice is accepted, caus- 
ing a particular EXEC file or program to 
be invoked. ISPF also includes features 
for menu-tree traversal, split screen man- 
agement, programmed function key inter- 
pretation, and support for producing 
application help facilities. ISPF panels are 
analogous to program procedures, able to 
call or be called by other panels or proce- 
dures. Since data communication between 
the end-user’s screen and the program is 
handled by variables and tables, data struc- 
tures for these must be declared in both the 
program and ISPF. Thus, use of ISPF is 
not for a dialogue developer; dialogue de- 
velopment is still a programming activity. 
These tools result in at least a superficial 
separation in that dialogue is contained in 
separate procedures, but there is no model 

or methodology to guide the process. None- 
theless, of the more than 12,000 CMS in- 
stallations, ISPF is the only software 
product that runs on every one, attesting 
to the need for such tools. An advanced 
version of ISPF called E-Z Vu is now avail- 
able for personal computers. 

IBM has a similar product, the Devel- 
opment Management System [1983] (nee 
Display Management System), available 
for use with VM/CMS and CICS/VS-DOS 
and especially suited for ADP-type appli- 
cations. Screen and function management 
are similar to those of ISPF, including a 
multiscreen paging ability. Data entry 
screens provide for record insertion and 
updating. An application programmer de- 
fines files and records, displays, and, to 
some extent, dialogue sequencing logic. 
Data communication is handled by pro- 
grammer-defined data structures, just as it 
is in ISPF. Such application generators 
have been shown to reduce both the time 
to develop applications and the number 
of errors in the implementation [Can- 
ning 19831. Application skeletons can be 
stored and adapted for sharing in other 
applications. 

Another IBM system, REXX/FSX [IBM 
VM/SP 19831, gives limited graphics sup- 
port to a dialogue developer. FSX provides 
the graphics support package for textual 
screens. REXX, a procedural command 
language similar to the VM/CMS-sup- 
ported PL/I, cooperates with application 
routines and the FSX graphics. A dialogue 
developer must program dialogue as REXX 
procedures. Nevertheless, IBM reports in- 
creasing numbers of systems developed 
with REXX/FSX end-user interfaces. 

A number of other specialized tools for 
solving specific end-user interface devel- 
opment problems (still, however, lacking 
modeling and methodology) arose in the 
late 1970s and early 1980s. As an example, 
Data General’s PRESENT Information 
Presentation Facility [ 19821 provides the 
capability to retrieve data from files and 
databases and to format that data into re- 
ports and graphical displays. Specialized 
nonprocedural commands are provided for 
producing pie charts, bar charts, and report 
formats. Digital Equipment Corporation’s 
Form Management System (FMS) [DEC’s 
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VAX11 FMS 19841 simplifies development 
of application systems that have form- 
filling interfaces. A menu-driven inter- 
active form editor allows development 
of forms by directly manipulating parts of 
the form. 

An Interactive Extension Facility (IEF) 
[Helander 19811 is a display manager that 
organizes human-computer interactions 
into “sessions” to facilitate end-user activ- 
ities with system objects. Basically, IEF is 
a set of simple tools for providing “add-on” 
interfaces to connect the end-user to oper- 
ating system commands and utilities. An- 
other example of a system that provides for 
some dialogue design is Screen Rigel [Rowe 
and Shoens 19831, a set of input/output 
features for Rigel, a high-level database 
programming language. Screen Rigel, how- 
ever, is intended for use by a database 
application programmer, not a dialogue 
developer, and the facility is not contained 
as a part of a broader system design 
methodology. 

A Dialogue Generator (DIAGEN) [Kai- 
ser and Stetina 19821 is a generalized soft- 
ware tool for creating an interactive 
interface that separates the dialogue from 
the dialogue-driven application program. A 
specialized DIAGEN language is used by a 
dialogue developer to “program” a scenario 
that describes the dialogue; this scenario is 
then interpreted. A single run-time mes- 
sage for erroneous end-user input was hard 
wired, the system could only respond 
“Wrong answer. DIAGEN repeats the 
question,” the whole sequence is repeated. 
Several of the above, and other, commer- 
cially available software tools for interface 
management are compared in a survey 
[Britts 19871. 

4.3 User Interface Management Systems 

4.3.1 Historical Perspective 

The term “user interface management sys- 
tem” (UIMS) appears to have first been 
used by Kasik [1982], although the idea 
existed earlier. Most early literature on 
UIMS was not concerned with the end- 
user, human factors of interfaces, or meth- 
odologies for software or interface devel- 
opment. In particular, early UIMS work 

I 
I User Interface I 

I Application I 
I I 
I Manager I Program 
,-___________-_-‘---------~~~~~~ 
I I 
I Graphics System 

Figure 16. User interface management system model 
(from Graphical Input Interaction Technique [1983, 
p. IS]). Reprinted with permission from James J. 
Thomas. 

did not emphasize human-computer inter- 
face development activity. Rather, its focus 
was on support-especially through graph- 
ics software-for execution of the interface 
[GIIT 1983; Guedj et al. 19801. Early 
UIMS-produced interfaces were specified 
by special languages or grammars (e.g., 
BNF-style definitions) or, more simply, by 
directly coding the interface in a program- 
ming lan,guage rather than by interactive 
Thus, early UIMS tools were strictly tools 
for programmers. 

The summary report of the Graphical 
Input Interaction Technique Workshop 
[1983] illustrates this emphasis on execu- 
tion by stating that “the role of a UIMS is 
to mediate the interaction between an end- 
user and an application. . . .” Also illustrat- 
ing the emphasis on graphics, it says that 
the “model underlying most of the presen- 
tations at both this workshop and Seillac 
II [Guedj et al. 19801 [is] a ternary division 
into an application program, a user inter- 
face management system (UIMS), and a 
graphics system.” This model is shown in 
Figure 16. In this model, connection to the 
end-user is not shown. For interface imple- 
mentation, this model calls for a “UIMS 
manager” to accept and store interface rep- 
resentations. Other diagrams of UIMS also 
sometimes emphasize run-time aspects, as 
in, for example, Figure 1 of Hayes et al. 
[1985]. 

A “reference model” [Lantz et al. 19871 
for the implementation of interactive soft- 
ware, shown in Figure 17, is a model that 
is more developed than that of Figure 16. 
It includes consideration of concurrent 
tasks, distribution, and multiple media. 
The emphasis of this reference model is 
still, however, execution and not design, 
and separation suffers because all layers of 
the model appear to have access to devices. 
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Figure 17. Reference model: Two views: (a) layered view; 
(b) modular view, with interfaces (from Lank et al. [1987, 
p. 881). Reprinted with permission from the authors and 
publishers. 

The model does represent all possible Later, the UIMS view began to broaden 
information flows for all possible applica- [e.g., Olsen et al. 1984; Tanner and Buxton 
tions, not just the flow for one application. 19841 to include considerations of the end- 
Both this reference model and the GIIT user and the dialogue developer. Although 
model could also be considered architec- much of the recent UIMS literature still 
tural models of the application system (see refers to programming of the interface- 
Section 2.4). and it is unlikely that interfaces can ever 
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Figure 18. Typical basic structure of a UIMS. 

be constructed totally without program- 
ming-there is much emphasis on a non- 
programming role and design-time tools for 
the dialogue developer. 

The typical basic structure of a UIMS is 
illustrated in Figure 18, along with the 
appropriate roles involved. A dialogue de- 
veloper interacts with automated tools 
for developing the application system’s 
human-computer interface; these tools 
produce an internal stored representation 
of the dialogue that is executed at run time 
to produce the interface. An application 
programmer produces the application sys- 
tem’s computational software, providing its 
functionality. These two developer roles 
communicate and coordinate their de- 
velopment efforts. End-users and system 
evaluators give feedback about the inter- 
face and system functionality. The entire 
process shown in Figure 18 forms a cycle of 
iterative refinement. The remainder of this 
section describes, generally in chronologi- 
cal order, representative examples of sys- 
tems to show the diversity of UIMS-like 
tools. Where appropriate, the description 
highlights unique or unusual features of the 
tools. Several of these tools are presented 
in more detail in the Appendix. 

4.3.2 Examples of UIMS 

The toolkit UIMS (formerly TIGER) 
[Kasik 19821, discussed in the Appendix, 
uses a “dialogue programming language,” 
which extends Pascal specification and dec- 
larative structures while retaining Pascal’s 
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control structures. The MENULAY [Bux- 
ton et al. 19831 UIMS design and imple- 
mentation tool is a high-level language 
preprocessor that translates dialogue 
(graphics and menus) design code written 
by an application programmer into C lan- 
guage programs that, when executed, pro- 
duce the graphics .and menus of the 
interface. 

In the Abstract Interaction Handler, 
Foley [1981] and Feldman and Rogers 
[1982] advocate separation of the end-user 
front end from the system semantics, even 
to the point of being able to customize 
interfaces for individual end-users [Feld- 
man 19811. The independence of their 
dialogue from system semantics allows ex- 
perimental evaluation of various interfaces 
while holding the underlying computa- 
tional system constant. A successor to 
AIH, the GWUIMS, is presented in the 
Appendix. 

The Dialogue Management System 
[Ehrich and Hartson 1981; Hartson et al. 
1984; Hix and Hartson 19861 is a research 
UIMS that has been developed as a test 
bed for interface management concepts. It 
contains an integrated set of interface 
development tools called the Author’s In- 
teractive Dialogue Environment, or AIDE, 
in early versions of DMS. These tools 
embody a structural model, methodology, 
representational notation, life cycle man- 
agement, and rapid prototyping. Tools in- 
clude a display tool, several menu tools, a 
forms tool, and primitives libraries. In ad- 
dition it contains several generic tools for 
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developing interfaces not supported by 
specific tools. DMS itself has a direct ma- 
nipulation interface. The DMS approach to 
interface development considers human- 
computer interface management as an 
integral part of software engineering and is 
detailed in the Appendix. 

The SYNGRAPH (SYNtax directed 
GRAPHics) [Olsen and Dempsey 19831 
and MIKE (Menu Interaction Kontrol En- 
vironment) [Olsen 1984a] UIMS use tex- 
tual languages for dialogue representation 
and code generation for dialogue implemen- 
tation. Input to SYNGRAPH is a BNF 
grammar that a programmer (not a dia- 
logue developer) uses to describe the com- 
mand language in terms of menu items, 
functir n buttons, valuators, and a single 
~ocato, device. From this description, a seg- 
ment of Pascal code is generated and then 
compiled-along with some standard inter- 
face code and the application’s seman- 
tic code-to create the final interactive 
program. 

A key issue tested by SYNGRAPH is the 
automatic allocation of screen space based 
on the interface description grammar. The 
programmer can divide the dialogue into 
levels or modes, each of which is character- 
ized by a menu or set of enabled devices. 
The software then analyzes each level, 
determines what interactive resources are 
needed, and allocates them appropriately. 
This approach was not very satisfying, 
however, because of its rigidity and the 
indirectness of defining graphics with a tex- 
tual language. In SYNGRAPH 2 (now 
called GRINS) [Olsen et al. 19851, end- 
users seem to prefer a layout editor pro- 
vided for performing the display layout 
functions. Another SYNGRAPH emphasis 
is error recovery. In the interface descrip- 
tion grammar, every nonterminal item 
definition can have a “cancel” production 
that is entered whenever the cancel button 
is selected. This allows the semantics 
programmed in the computational code to 
perform any recovery needed. 

MIKE [Olsen 1984a] was created in 
response to the large amount of effort 
required to teach programmers how to use 
SYNGRAPH. MIKE is based on command 
procedures that define the set of interactive 

commands. Initially the programmer gives 
MIKE a list of procedures (functions) and 
the types and names of their parameters. 
An initial interface simply displays the 
names of all procedures in a menu and 
allows the end-user to select a procedure by 
typing any unique abbreviation of the pro- 
cedure’s name. The end-user is then 
prompted for the first parameter and is 
given a menu of all functions that return 
that parameter’s type as their result. This 
process continues until a complete expres- 
sion has been input, at which point the 
appropriate procedures are called to exe- 
cute the semantics. This approach is simple 
to teach to programmers but is not very 
graphical. MIKE has a profile editor that 
allows the interface to be interactively tai- 
lored into a more acceptable form. The 
profile editor can edit the’ names of com- 
mands to more end-user acceptable terms; 
map commands to function buttons, graph- 
ical icons, or textual prompts; and organize 
commands into menu trees for a more suit- 
able structure. 

State transition diagrams provide an 
ideal graphical language to be supported by 
direct manipulation dialogue development 
tools. An example is seen in the Transition 
Diagram Editor (TDE) [Mills and Wasser- 
man 19841 of RAPID/USE (previously dis- 
cussed in Section 3). The TDE is a 
graphical editor for stat.e transition dia- 
grams, based on menu selection using a 
mouse and keyboard. Because the TDE 
knows about the connectivity of nodes and 
arcs being created, it can automatically do 
some of the formatting. This allows the 
system designer to concentrate on diagram 
semantics. To create a node, the designer 
points with the mouse to the desired screen 
position. To create an arc, the designer 
points to the nodes to be connected, and 
the TDE draws the lines and arrowheads. 
Contents of the nodes, which contain, for 
example, the dialogue language code for 
displaying a menu, are created using a text 
editor. The TDE directly generates USE 
transition diagram language descriptions 
for the RAPID/USE Transition Diagram 
Interpreter (TDI). Other systems use sim- 
ilar approaches to interactive representa- 
tion of the interface; for example, Jacob’s 
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[1985] work has produced a state diagram 
specification interpreter. Both RAPID/ 
USE and the state diagram specification 
interpreter are presented in the Appendix. 

Apollo Computer’s Domain/Dialogue 
(D/D; formerly known as A Dialogue Man- 
ager) [Schulert et al. 19851 is again typical 
of the UIMS approach in which emphasis 
is on mechanisms for handling execution- 
time aspects of interfaces. D/D dialogue 
is programmed using a compiler and a 
run-time dialogue library. The dialogue is 
defined around a set of interaction tech- 
niques, which form the basis for the inter- 
face to the computational code. A set of 
interaction techniques is assembled to 
define the end-user interface. Given a 
particular task set, a variety of end-user 
interfaces can be developed to carry out 
run-time interactions, including menus, 
pointing, forms, and function keys. D/D is 
a commercially available product running 
on an Apollo workstation, using bit mapped 
graphics. Open Dialogue, the successor to 
D/D, is described in the Appendix. 

Unicad [1985] has developed a UIMS to 
ease the task of implementing interactive 
computer-aided design (CAD) systems. A 
CAD environment requires interactive 
graphics support; the Unicad system is built 
on a graphics package that provides support 
for graphical interaction techniques, partic- 
ularly at the lexical level. The Unicad sys- 
tem is, however, for use by application 
programmers, not dialogue developers. 

The Trillium UIMS provides an example 
of composability of interface objects; com- 
posite objects are hierarchical composi- 
tions of dialogue primitives, defined by 
LISP code [Henderson 19861. A library 
of primitives and composites can be 
shared as building blocks for interface 
development. 

The Graphical User Interface Develop- 
ment Environment (GUIDE) [Granor 
and Badler 19861 is an interactive graphical 
system for designing and generating 
graphical end-user interfaces. ‘It provides 
flexibility to the system designer while min- 
imizing the amount of code the designer 
must write. The primary goal of GUIDE is 
to provide a simple, interactive way for a 
dialogue developer to specify an application 

interface. Style of the interface should be 
determined by the developer, and the de- 
veloper should be able to describe with 
GUIDE any interface that could be coded 
by hand. 

GUIDE provides a great deal of freedom 
in representation of the control path and 
parameters to action routines. The devel- 
oper may refer to application constants, 
types, variables, and functions in defining 
the interface. This ability greatly reduces 
the number of states needed to define the 
interface. Actions are provided to perform 
application functions, and may have pa- 
rameters based on inputs and application 
values. Multiple control paths may be rep- 
resented by the dialogue developer based 
on inputs, application values, and end-user 
characteristics. Inclusion of a developer- 
defined end-user profile allows the devel- 
oper to represent different interfaces 
within a single system for different end- 
users. Various interaction styles and de- 
vices can be used, including menus, forms, 
picking, and keyboard. The developer may 
choose among any that are suited to a task 
and may, in fact, allow the end-user to 
choose among several styles or devices to 
provide a particular input. 

Enter/Act is a product from Precision 
Visuals [1987] with a set of high-level 
tools to handle all aspects of the human- 
computer interface, particularly those 
developed on Digital Equipment’s VAX 
hardware. Enter/Act emphasizes prototyp- 
ing and extensive graphics based on DI- 
3000 graphics software. It includes various 
practical aids for enhancing developer pro- 
ductivity, such as debugging mechanisms 
and command macros. 

The SmethersBarnes Prototyper [Pro- 
totyper 19871 is a commercially available 
tool that, despite its name, is more a UIMS 
than a prototyper. It can be used to develop 
Macintosh-style interfaces, including win- 
dows, pull-down menus, radio buttons, and 
check boxes. Its interface generally uses 
direct manipulation to produce the appli- 
cation interface. Application semantics can 
be coded in one of several programming 
languages and linked to the interface for 
execution. Prototyper is detailed in the 
Appendix. 
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4.4 Toolkits and Related Graphics Support 

Several systems for interface management. 
are built on top of graphics packages such 
as the Core system [IEEE Computer 
Graphics 19791 or the Graphics Kernel Sys- 
tem (GKS) [IEEE Computer Graphics 
19841, but “standard” graphics packages 
rarely provide enough functionality for 
most state-of-the-art interface needs. 

A command interpreter (kommandoin- 
terpreter-KI) has been developed as the 
basis for one such support environment 
[Borufka and Pfaff 19811. The KI com- 
mands form the linkage between graphical 
input and output data and provide the dia- 
logue developer with functions for prompt- 
ing, echoing, and editing dialogues. At the 
heart of the system is GKS, which provides 
a set of functions for graphical data pro- 
cessing independent of specific graphical 
input/output devices, programming lan- 
guages, and application systems. It includes 
two-dimensional input/output primitives 
and a segment facility for subdividing 
graphical pictures. Graphical output can be 
routed to multiple workstations. On top of 
GKS are the KI kernel commands, which 
serve two purposes: to allow interactive use 
of the GKS functions by providing the end- 
user with a common set of commands and 
to provide system functions for echoes, er- 
ror messages, help screens, and editing. Ex- 
tensions to the KI include end-user-defined 
command sequences and menus and com- 
mands defined by end-users and dialogue 
developers. 

The ACM/SIGGRAPH/GSPC Core 
System is another standardized graphics 
package that is being used to support inter- 
face management systems. This Core 
standard provides a high degree of device 
independence. The Abstract Interaction 
Handler (AIH) [Kamran and Feldman 
19831 has been built on top of the Core 
system, with emphasis on various interac- 
tion techniques and styles. The uncoupling 
of interaction-supporting code from appli- 
cation-supporting code is a major feature. 
One-level Core “segments” are the basis for 
a screen handler. This package of routines 
creates a higher level structure of these 
segments in order to handle logical screens, 

to which all output is written. Binding of 
interactions to logical windows is accom- 
plished by the screen handler, whereas 
binding of interactions to specific devices 
is handled by the basic Core system. The 
implementation of Functional Language 
Articulated Interactive Resources (FLAIR) 
[Wong and Reid 19821 (see the Appendix) 
required a significant extension of the Core 
standard. 

GKS is a standard for static grdphical 
images. The Programmers Hierarchical 
Interactive Graphics Standard (PHIGS) 
[Brown 19851 has improved capabilities for 
dynamic interaction. PHIGS, however, in- 
herited many of the drawbacks of the GKS 
input model [Meads 1987; Puk 1986; van 
Dam et al. 19871. The number of input 
device classes is limited, and there is no 
window management. As a result, PHIGS 
cannot support many of the new input 
techniques. 

The graphics systems described above 
are general software packages with empha- 
sis on graphics power; interface considera- 
tions are secondary. Their drawbacks led 
to a new class of graphics support toolkits, 
oriented more toward problems of interface 
development. Many of these systems are 
based on window managers. Most window 
manager ideas come from Xerox PARC 
systems such as Smalltalk and Star. Win- 
dow managers allow systems to be designed 
so that the end-user can interact with sev- 
eral tasks, each in a different “viewport.” 
Typically, only one window at a time can 
be actively awaiting input, attached to the 
keyboard and mouse. Many window man- 
agers, however, allow multiple windows to 
receive output at the same time. Each win- 
dow acts as a separate logical terminal de- 
vice with its own input and output services. 
End-users can manipulate windows, and 
communication among windows is typically 
cut and paste using a clipboard concept. 
Most window managers are toolkits in the 
sense that they contain libraries of window 
functions-and possibly other interface 
features-that programmers can invoke. 

The X Window System [Scheifler and 
Gettys 19861, developed at the Massachu- 
setts Institute of Technology, supports an 
arbitrarily branching hierarchy of resizable, 
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overlapping windows upon which human- 
computer interfaces can be built. A base 
window system provides high-performance, 
high-level, device independent graphics to 
this hierarchy. This base window system 
provides facilities to build applications and 
managers for input and windows. X pro- 
vides ‘Lwidgets,” which are primitives from 
which various interface styles can be con- 
structed. This feature makes it attractive 
as a support environment for developing 
human-computer interfaces. In fact, X is 
now one of the most widely used support 
environments for both research and com- 
mercial products. Its libraries and tools for 
facilitating interface development are rap- 
idly expanding. 

Display PostScript [Perry 19881, by 
Adobe Systems, is a graphics support 
toolkit that uses a UNIX “troff”-like lan- 
guage for describing display pictures and 
inputs. It evolved from the PostScript lan- 
guage for describing Apple LaserWriter out- 
put. Despite X Window’s popularity, 
Display PostScript is generally considered 
technically superior. Sun Microsystems is 
building their Network Extendible Window 
System (News), previously called 
SunDew, using Display PostScript. Post- 
Script programs are downloaded to the 
NeWS window manager to improve per- 
formance. One of the most common window 
managers in the IBM PC world is Micro- 
soft’s Windows [Puglia et al. 19861. 

4.5 Other Support 

4.5.1 Database Management 

Outputs of all tools within a UIMS, includ- 
ing interface definitions, documentation, 
and even program code, must be stored and 
retrieved. Massive amounts of secondary 
storage are required to store representa- 
tions of interfaces and the objects they 
contain-screen descriptions, graphics, 
text, sequencing relationships, input vali- 
dation criteria, and so on (see Section 3). 
Most interface definitions are retrieved and 
executed or interpreted at prototyping time 
and run time. 

Early UIMS and other dialogue tools 
used file systems provided by host operat- 
ing systems. This is convenient for experi- 

menting with prototype tools but lacks the 
power and flexibility needed for real appli- 
cations. High-performance database sys- 
tem support is required. Descriptions of 
individual interface objects are stored sep- 
arately for sharing and reusability. It is a 
significant performance challenge to a da- 
tabase management system to bring them 
back together through relational joins, for 
example, which are computationally com- 
plex operations. 

Some researchers have found that most 
commercially available systems either are 
too expensive or do not provide the flexi- 
bility and performance necessary for this 
demanding application and have devoted 
considerable effort to developing their own 
supporting database management system. 
Two examples of interface management 
systems that use their own internally de- 
veloped relational database systems as sup- 
port are RAPID/USE and DMS. It is 
interesting to note that both these database 
systems, nontrivial development efforts in 
themselves, were entirely produced using 
the respective software development meth- 
odologies. Current object-oriented pro- 
gramming systems provide some of their 
own internal capability to store and retrieve 
large numbers of object definitions. The 
state of this technology is, however, still 
limited in the size of application system 
designs that can be stored. 

4.5.2 Object Orientation 

Human-computer interface development 
tools need the ability to support rapid de- 

-sign changes without recompiling or relink- 
ing, which can take substantial amounts of 
time for large application systems. Because 
of their interpretive nature and dynamic 
binding capabilities, languages such as 
LISP and its variations are popular for 
implementing interface development tools. 
Object-oriented programming environ- 
ments have also attracted the attention of 
tool implementers [Fischer 1987; Sibert et 
al. 19881, with languages such as FLA- 
VORS and LOOPS combining LISP with 
object orientation. An object-oriented pro- 
gramming environment, such as Smalltalk 
[Cox 1986; Goldberg and Robson 19831, 
offers the advantage, for tool implementa- 
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tion over conventional programming, of a 
capability for hiding enough information to 
represent objects independently of their 
implementation. Because of its event-based 
nature, object orientation is effective for 
representing asynchronous dialogue and for 
representing the behavior of specific inter- 
face features (e.g., windows) regardless of 
their context. The capability for dynamic 
binding, hierarchical definition with inher- 
itance of attributes and procedures, and 
communication by message passing work 
together to support sharability, reusability, 
consistency, flexibility, and low code bulk 
within interface implementations. 

A disadvantage of object orientation is 
the tendency to obscure temporal relation- 
ships in the high-level sequencing behavior 
in the application interface. Because of this 
limitation, object orientation has yet to be 
proven useful for representing the view of 
the dialogue developer or the end-user; it is 
possibly better suited for the tool developer 
than the tool user. Other disadvantages 
include a steep learning curve for program- 
ming and a high performance penalty due 
to interpreted code, dynamic binding, and 
message passing. The current version of the 
Dialogue Management System is imple- 
mented using Smalltalk; the architecture of 
the George Washington University UIMS 
is broadly object oriented and is discussed 
in detail in the Appendix. Object orienta- 
tion is also suitable for supporting proto- 
typing tools [Diederich and Milton 19871. 
The class concept allows easy implemen- 
tation of variations of tools, for example, 
by defining tool P to be the same as tool Q 
except for certain features. 

4.5.3 Workstations 

Beyond graphics standards are technologi- 
cal advances that have produced powerful 
graphics workstations useful for supporting 
interface management. These workstations 
are typically stand-alone micro- or mini- 
computers with their own substantial 
operating systems and most graphics 
functions implemented in high-perform- 
ance hardware. Several interface devel- 
opment tools have been implemented 
on graphics workstations-for example, 
RAPID/USE on a SUN, RIPL on a 

MicroVAX, Domain/Dialogue and Open 
Dialogue on an Apollo, DMS on a Sil- 
icon Graphics IRIS, and a state transi- 
tion diagram interpreter on a Symbolics 
machine. 

5. RAPID PROTOTYPING 

Present methods for developing and eval- 
uating human-computer interfaces are 
more analytic than synthetic in nature. 
That is, something must first be built, then 
analyzed, then iteratively refined. The 
present state of human factors does not 
allow synthesizing a human-computer in- 
terface and “getting it right” the first time, 
and this is unlikely to change soon. In 
comparison with software design, which is 
often correctness driven, interface design 
must be a self-correcting process. As Car- 
roll and Rosson [1985] point out; design 
activity is essentially empirical “not be- 
cause we don’t know enough yet, but 
because in a design domain we can never 
know enough.” The process of iterative re- 
finement involves two important roles: One 
is related to computer science, the other 
to behavioral science. The latter role is 
responsible for dialogue principles and 
human factors, which are not in the scope 
of this survey. The computer science role, 
however, is to provide human factorability 
of interfaces, which is at the heart of this 
article. 

5.1 Motivation for Rapid Prototyping 

Building systems is expensive and time 
consuming. The alternative is to build pro- 
totypes rather than complete systems. 
Human factorability calls for dialogue 
development tools that will rapidly produce 
prototypes to allow early observation of 
interface behavior and that will allow easy 
modification of designs. Thus, rapid pro- 
totyping is a major concept of human- 
computer interface management. Rapid 
prototyping of interfaces is also sometimes 
called dialogue simulation, and prototypes 
are sometimes called scenarios or executa- 
ble specifications. Prototypes can also be 
written just as programs. 

Prototyping is an approach to system 
development that involves production of at 
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least one early version of the application 
system, demonstrating essential features of 
the later operational system. With rapid 
prototyping the process is accelerated so 
that many alternatives can be evaluated 
and the effects of each modification can be 
promptly observed. Rapid prototyping 
brings together both interface representa- 
tion and execution, often under the aegis of 
a UIMS. Rapid prototyping is, though, pri- 
marily a technique, not a tool. Valuable 
insight can be derived from use of paper 
and pencil interface prototypes early in the 
interface development process. Key ingre- 
dients of a rapid prototyping approach in- 
clude an early ability to observe end-user 
and system behavior, use of scenarios, end- 
user participation, and an evaluation ori- 
entation to development. The iterative 
nature of human-computer interface devel- 
opment imposes changes in the traditional 
linear development life cycle [Hartson and 
Hix 19891. A prototype reduces the chances 
of surprises to the end-user, helps solve the 
problem of the end-user’s inability to give 
complete specifications to system design- 
ers, and “gives the end-user a more imme- 
diate sense of the proposed system” 
[Wasserman and Shewmake 19821. It 
reveals misunderstandings that arise be- 
tween developers and end-users because 
of their different backgrounds and experi- 
ence [Gomaa and Scott 19811. 

Whereas testing, verification, and vali- 
dation are intended to indicate whether a 
design meets a requirements specification, 
prototyping can show up errors in the re- 
quirements. These errors in requirements 
are difficult to detect and even more diffi- 
cult to correct [Boehm et al. 19841. The 
goal is fast communication of interface de- 
sign alternatives to developers, end-users, 
and implementers. Rapid prototyping al- 
lows the process of iterative refinement to 
occur earlier in the design process. For 
more than 15 years, the literature has called 
for involving the end-user in system design; 
rapid prototyping provides a way, for the 
first time, to do this effectively and effi- 
ciently. The emphasis on this approach to 
system design is evidenced by the appear- 
ance of several surveys and workshops 

[Carey and Mason 1983; Freeman 1980; 
Zelkowitz 19821 (Cochran, private com- 
munication, 1984). 

At first, especially among developers, 
there was some question as to whether a 
working prototype was necessary. Why 
couldn’t anyone follow the requirements 
and design documentation, especially the 
procedural parts, and see for themselves 
what the target application system was 
like? Wasserman and Shewmake [1985] 
respond very well: “While some customers 
are willing to buy some cars simply from a 
brochure containing technical specifica- 
tions and photographs, most customers 
prefer the opportunity to take a test drive, 
even if the car that they test is not identical 
to the one that they will purchase.” 

Alavi [1984] compared prototyping with 
the traditional life cycle approach to soft- 
ware development on twelve information 
projects in six different organizations. The 
study concluded that prototyping, espe- 
cially in the face of unclear or ambiguous 
end-user requirements or where there is a 
need for experimentation (which is true, 
of course, for most systems with human- 
computer interfaces), was effective as an 
approach to interactive system develop- 
ment. In particular, results showed that 
end-users of systems developed using a pro- 
totype were more favorable toward the final 
system than were end-users of nonproto- 
typed systems. Prototyping also facilitated 
communication between end-user and de- 
veloper, but it did cause some difficulty 
with managing the design process. 

In another multiproject experiment in- 
volving seven software teams, Boehm et al. 
[ 19841 reported that prototyping, compared 
to complete a priori specification as a 
development approach, produced software 
with equivalent performance but with 
about 40 percent less code and 45 percent 
less effort. Although the prototyped soft- 
ware rated lower on functionality and 
robustness, it was judged easier to learn 
and use. These conclusions indicate that 
human-computer interface concerns are 
supported by prototyping as a system 
development approach. The areas that suf- 
fered represented software concerns more 
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than dialogue concerns, a fact that indi- 
cates the need for a software development 
methodology that integrates prototyping, 
especially interface prototyping, as part of 
the whole system development life cycle. 
The next section, on Methodologies for In- 
teractive System Development, discusses 
methodological issues that address this 
problem. Hartson and Smith [1988] give 
more discussion of advantages and disad- 
vantages of prototyping in the development 
process. 

The idea behind interface prototyping is 
not new; it can be thought of as an exten- 
sion of software simulation, with emphasis 
on the human-computer interface. The ex- 
perimental work on a help facility in the 
Interactive Chart Facility [Clark 19811 is 
an example of an early approach making 
this transition from software to interface 
simulation. Even before software simula- 
tion, the same ideas were used (for the same 
basic reasons) in the early prototyping of 
hardware logic designs [Hartson 1969; 
Hays 1969; Linebarger and Brennan 19641. 

5.2 Kinds of Prototypes 

Approaches to prototyping can be classified 
along at least three (more or less orthogo- 
nal) dimensions: revolutionary versus evo- 
lutionary, interface only versus whole 
system, and intermittent versus continuous 
[Hartson and Smith 19881. A “revolution- 
ary” development process is one in which a 
prototype is designed, built, evaluated, and 
scrapped before work begins anew on the 
real system. A revolutionary prototype is 
most useful when built as early as possible, 
without a large commitment of resources. 
In an “evolutionary” development process, 
a prototype evolves through iterative mod- 
ification into a complete implementation of 
the target application system. The evolu- 
tionary approach avoids wasted effort and 
the difficult question of when to discard the 
prototype and start working on the real 
system. 

“Interface only” prototypes are very com- 
mon; a mock-up facade is fairly easy to 
construct and execute. Dan Bricklin’s 
Demo Program [ 19871 and Skylights [ 19871 
are among the increasing number of prod- 

ucts currently available that use a “slide- 
show” concept to build and view sequences 
of screens (scenarios), including automatic 
pacing and end-user-directed branching. 
Such tools, however, rarely have a dialogue 
model or predesigned dialogue constructs 
(e.g., menus or forms) and often accept only 
alphanumeric keyboard input. In some 
cases these products have been augmented 
with ways to connect calls to semantic 
(computational) routines, and some have 
added code generators. FLAIR [Wong and 
Reid 19821 and GIDS [Overmyer and 
Campbell 19841 are examples of prototyp- 
ing systems that build detailed, complex 
graphical mockups yet are still interface 
only. “Whole system” prototypes, however, 
have advantages. As computational func- 
tions are developed, it is desirable to see 
them in action in the prototype. A disad- 
vantage is that whole system prototypes 
are difficult to build; their execution envi- 
ronment requires much more technically 
complicated support. 

Prototypes for which the ability to dem- 
onstrate system behavior is “intermittent” 
can be exercised only at times in the devel- 
opment process when a particular version 
of the system has been completely con- 
structed. A coded implementation of a 
prototype (slow prototyping) is an inter- 
mittent type. There are long intervals be- 
tween complete versions where the code 
cannot be compiled and run. This approach 
is not responsive to the needs of iterative 
development. Prototypes that can be exer- 
cised on a more or less “continuous” basis 
are more desirable for interface develop- 
ment and do not depend on complete de- 
velopment of a specific version of the 
system. Prototyping of incomplete designs, 
however, poses challenging problems in the 
support environment, primarily because 
software is fragile. The slightest error or 
missing piece can prevent it from running. 
Even stubbed systems must be syntacti- 
cally complete and correct. The nature of 
prototypes, especially early ones, is to be 
incomplete, ambiguous, tentative, and error 
prone. The support environment must keep 
a prototype running despite these initial 
defects. 
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5.3 Approaches to Rapid Prototyping 

Because rapid prototyping usually requires 
interpretation of interface representations, 
approaches to rapid prototyping are related 
to the corresponding approaches to inter- 
face representation, discussed earlier in 
Section 3. In particular, there are prototyp- 
ing approaches for interfaces represented 
by state transition diagrams, BNF-style 
grammars, and event-based mechanisms. 
Most of the sequential prototypers (i.e., 
those based on BNF or state diagrams) are 
similar conceptually, the differences being 
mostly in ease of use of the representation 
scheme. Since time sequencing is an impor- 
tant aspect of sequential dialogue proto- 
tming, the state transition diagram 
representation (which graphically shows 
sequential relationships) may be preferred 
by nonprogrammers. For event-based dia- 
logue, HyperCard (discussed at the end of 
this section) represents another kind of 
approach. 

5.3.1 State Transition Diagram-Based 
Prototyping 

Both Jacob and Wasserman have devel- 
oped similar rapid prototyping systems, 
which, like their interface representation 
schemes, are based on state transition dia- 
grams. Both systems are discussed in the 
Appendix. Wasserman and Shewmake’s 
[1982, 19851 RApid Prototypes of Interac- 
tive Dialogues (RAPID/USE) is a part of 
their broader User Software Engineering 
(USE) methodology to support construc- 
tion of prototypes and interactive infor- 
mation systems. For prototyping, local 
storage variables are added to store state 
information and to communicate with the 
semantic part. Since semantic actions are 
associated with each arc, an entire inter- 
active information system could be imple- 
mented using the RAPID/USE interpreted 
approach to state transition diagrams, by 
invoking programmed semantic routines 
when needed during the dialogue sequence. 
By adding this functionality to the proto- 
typing process, RAPID/USE can provide 
realistic dialogues more closely associated 
with the appropriate semantic action 
instead of fixed, predetermined stub 
messages. 

A Transition Diagram Interpreter (TDI) 
executes the coded representations and 
simulates the interface. Because the TDI 
interprets the coded representations, re- 
compiling is not necessary when changes 
are made. During the use of RAPID, logs 
are maintained for metering raw inputs, 
allowing analysis of keystroke-level events 
and playback of scenarios. Time-stamped 
transition-level events are also logged for 
analysis. A commercially available version 
of RAPID/USE is now marketed by Inter- 
active Development Environments, Inc. 

Jacob’s [ 19831 use of state transition dia- 
grams is similar. As in RAPID/USE, state 
transition diagrams are converted to a cor- 
responding text form (a state transition 
textual language) much like a high-level 
programming language. This textual form 
is executable, providing rapid prototyping 
of the interface. 

A third system based on a representa- 
tion technique similar to state diagrams is 
the Dialogue Management System (DMS) 
[Hartson et al. 19841 in which rapid pro- 
totyping is done by a subsystem called the 
Behavioral Demonstrator. All parts of the 
dialogue are produced using the Author’s 
Interactive Dialogue Environment (de- 
scribed in Section 4.3), with the declarative 
representations stored in a database and 
interpreted for prototyping. Graphical rep- 
resentation of the global control struc- 
ture-which in DMS is separate from the 
dialogue but controls sequencing between 
dialogue and computation-is directly in- 
terpreted, without an intermediate textual 
language. The two representations, to- 
gether with their respective tools, allow 
refinement of logical sequencing, dialogue 
form and content, and interaction styles 
during prototyping. The Behavioral Dem- 
onstrator demonstrates those parts of the 
system that are implemented and uses dia- 
logue developer-provided samples of values 
for data of those parts that are not yet 
implemented. The Behavioral Demonstra- 
tor provides a life support system for par- 
tially completed designs, which is able to 
execute as much of the dialogue (and whole 
system) as is completed at a given time. As 
they become available, actual application 
dialogue and computational functions be- 
come part of what is demonstrated. The 
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final system gracefully evolves without the 
added effort of throwaway prototype code. 
An experimental version of the Behavioral 
Demonstrator has had limited, but success- 
ful, use. 

Mason and Carey [1983] have analyzed 
ACT/l, once a commercially available 
product for rapid prototyping of end-user 
interface scenarios. Sequential dialogue in 
this screen-oriented system is created “by 
example” through filling in parts of a 
screen. The logical sequencing mechanism 
is basically the same as in state transition 
diagrams, but the representation is in 
tabular form, showing procedural links. 
Control flow is represented by textually 
noting the relationship between end-user 
inputs and successor routines and screens. 
ACT/l uses an “architecture-based” meth- 
odology, with which the system designer, 
much like a building architect, develops the 
external appearance of the system and 
works inward to develop the system design. 
An application is seen as a series of (input 
screen, process, output screen) sequences, 
and linkages or control among these 
screens. Screen scenarios are used as the 
communication mechanism between the 
application end-user and the system devel- 
oper. The end-user can follow a fixed script 
through screens without any application 
logic having been developed. Logic flow def- 
inition is by example through the screens, 
indicating the successor screen for each 
possible end-user input. 

Suggestions made by the end-user while 
exercising the ACT/l scenarios are incor- 
porated during successive iterative refine- 
ment processes. A demonstration phase 
with partially implemented application 
logic evolves finally into a first prototype 
of the target application system. Dialogue 
screens developed in the specification stage 
are directly usable in this production ver- 
sion. ACT/l has had more than 100 
end-users and has been widely applied and 
evaluated in the development of interactive 
information systems [Mason and Carey 
19811. 

TRW’s FLAIR system [Wong and Reid 
19821 is similar to ACT/l in that it directs 
a dialogue developer through sequences of 
menu screens to translate a scenario into a 
form that can be executed or simulated. 

FLAIR was one of the first to use a lan- 
guage, called a Dialogue Design Language 
(DDL), as a dialogue representation instead 
of a formal language grammar. FLAIR’s 
voice menu-driven DDL allows system 
designers to construct highly graphical 
human-computer interfaces and allows the 
end-user to interact with a prototype of the 
final system through scenario simulation, 
facilitating experimentation with various 
interfaces. FLAIR can create, store, and 
retrieve static frames, as well as allow the 
end-user to define and control a hierarchy 
of menus. FLAIR and another rapid pro- 
totyper called the Rapid Intelligent Proto- 
typing Language (RIPL) are presented in 
the Appendix. 

5.3.2 BNF-Based Prototyping 

Very similar to the state transition dia- 
gram-based approaches for prototyping are 
those based on BNF-like grammatical in- 
terface representations, although there are 
fewer of these. The grammars are inter- 
preted with mechanisms that are basically 
finite state machines. The different type of 
representation carries with it a slight dif- 
ference in emphasis, treating the interface 
in a more language-oriented way with a less 
direct emphasis on control structure and 
sequencing. 

The Interactive Dialogue Synthesizer 
(IDS) developed by Hanau and Lenorovitz 
[Hanau and Lenorovitz 1980a, 1980b; Len- 
orovitz and Ramsey 19771 is an example of 
a set of tools to create simulations of end- 
users’ interactive dialogues for which dia- 
logue is defined using a BNF grammar. 
Displays are defined as machine-indepen- 
dent semantic actions, the meanings of 
which are defined in terms of an abstract 
machine, attached to rules of the grammar. 
Language processors are automatically 
generated from the grammar and used to 
execute interface representations as a sim- 
ulation. Initial conceptual “snapshots” of 
scenarios are predrawn and, along with 
dynamically constructed displays, are used 
to simulate the external appearance of the 
desired application system. Real-time dis- 
play updates are simulated with timed se- 
quences of static displays. IDS has been 
successfully applied to a number of diverse 
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real-world application areas, mostly com- human-computer interface in Section 3; in 
mand and control systems. this section we will focus on the procedural, 

life cycle aspects and, in particular, on 

5.3.3 Event-Based Prototyping 
connections of human-computer interface 
development to the development process 

An example of prototyping using an event- for the rest of a target application system. 
based mechanism, more suitable for Although technical matters abound, the 
prototyping asynchronous, multi-thread subject of development life cycles is also a 
dialogue, is found in the use of Apple management issue [ Mantei 19861. 
Macintosh’s HyperCard [Goodman 19871 The need to view human-computer in- 
as a prototyper. In HyperCard, a “card” is 
a screen of text and graphics objects, and 
cards are grouped into “stacks.” A dialogue 
developer can define “hot spots” associated 
with objects on the screen, making such 
objects selectable in response to end-user 
actions such as mouse button clicking. The 
dialogue developer also defines a response 
to each event; for example, a mouse click 
action on an arrow object can be made to 
cause execution to move ahead to the next 
card in the current stack. Using Hyper- 
Card, the dialogue developer can create a 
template-like background for a particular 
style of card to be used throughout a stack. 
To this background are then added fore- 
ground objects specific to each individual 
card. For example, a name, address, and 
phone number background card could be 
created and then numerous individual 
cards with specific instances of name, ad- 
dress, and phone number overlaid on the 
background. A library of icons (symbols), 
many even with semantics (response to 
end-user actions) attached, greatly facili- 
tates interface development. Use of the 
HyperTalk programming language to cre- 
ate program “scripts” allows linkage among 
cards and serves as a general means for 
providing semantics where necessary. 
HyperCard has been called programming 
for nonprogrammers, and, as such, is a suit- 
able system for use by dialogue developers. 

terface management as an integral part of 
the software engineering process is being 
recognized [Draper and Norman 1985; 
Hartson and Hix 1989; Hartson et al. 19841. 
Interfaces cannot be developed as “add-on” 
parts of an interactive system, with their 
development carried out in isolation from 
development of the rest of the application 
system. Thus, an important concept in 
human-computer interface management is 
a methodology for interactive system devel- 
opment. In particular, a holistic approach 
to development provides a comprehensive 
methodology for software design, empha- 
sizing interface development as an integral 
and equal part of the process. Procedures 
and notations are provided specifically for 
representing and designing the dialogue. 
The definition of “system” is enlarged to 
consider both humans and computers as 
components. 

Also, an approach to interface develop- 
ment integrated with software engineering 
must support some form of prototyping. 
One of Boehm’s [1983] seven basic princi- 
ples of software engineering is to perform 
continuous evaluation. Prototyping is an 
effective way to begin evaluation and test- 
ing, traditionally relegated to the end of the 
life cycle, as early as the requirements spec- 
ification phase. But prototyping can intro- 
duce serious management problems unless 
the process and its impact on the life 
cycle are well understood [Hartson and 
Smith 19881. 

Development of a large software system 
is a complex task even without considering 

6. METHODOLOGIES FOR INTERACTIVE 
SYSTEM DEVELOPMENT 

A methodology for system development the necessity for an effective end-user 
consists of a set of procedures that indicate interface. Many current software develop- 
a step-by-step development process over a ment methodologies are aimed at reducing 
life cycle and a notational scheme that is this complexity for the application 
the means for documenting designs that programmer by providing tools and guide- 
evolve during that life cycle.’ We discussed lines for software analysis, design, im- 
notational representation schemes for the plementation, and maintenance. Recent 
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methodological advances have begun to 
emphasize the role of a human factors ex- 
pert in the traditional system development 
life cycle by including-parallel to those 
in place for software development-new 
guidelines, methods, and tools to produce 
quality interfaces. 

It is true that addition of a dialogue de- 
veloper to the overall system design team 
increases the need for communication in 
an already sizable group, which can include 
systems programmer, application program- 
mer, systems analyst, application expert, 
end-user, and human factors engineer. A 
holistic system development methodology, 
led by a role sometimes called a systems 
engineer, however, embodies the activities 
and principles of both software engineering 
and human factors engineering, providing 
appropriate development and communica- 
tion tools for each. 

Human-computer interface manage- 
ment is a logical extension of current work 
in software engineering and automated 
development environments. Numerous 
methodologies fully or partially cover the 
software life cycle activities with varying 
levels of automation. Most of these meth- 
odologies use a top-down development 
strategy. A questionnaire-based evaluation 
of 24 methodologies is presented by Por- 
cella et al. [1983]. Among these, the Jack- 
son [1975, 19831 and Warnier-Orr [Hosier 
19781 methodologies use data as the basis 
of design, and both derive the program 
structure from data structures. These, how- 
ever, do not help a dialogue developer who 
is concerned with the human being’s role 
during the operation of a system. The 
Structured Analysis and Design Technique 
(SADT) [Ross and Schoman 19771, Struc- 
tured System Analysis (SSA) [Weinberg 
19801, and Structured Design [Myers 1975, 
1978; Stevens 1981; Stevens et al. 1974; 
Weinberg 1980; Yourdon and Constantine 
19791 use the notion of a “process” as the 
basis of design and build the design around 
functions of the final system but still do 
not emphasize management of interface 
development. 

Automated support tools and environ- 
ments for programming already exist, and 
interest in them is increasing, especially 
within larger programming language and 

methodology efforts such as Ada and the 
associated Software Technology for Adapt- 
able, Reliable Systems (STARS) program 
[IEEE Computer 19831. As already noted, 
however, most automated tools associated 
with these methodologies support the de- 
veloper in the coding phase of software 
production, not the design phase, and they 
generally lack tools to facilitate construc- 
tion of human-computer interfaces. On the 
other hand, interactive tools specifically for 
producing interfaces, such as those pre- 
sented in Section 4, often exist, but without 
being integrated into a methodological 
approach to whole system design. 

We found only two software methodol- 
ogies, the USE methodology and the DMS 
methodology, that explicitly support dia- 
logue development as an integral part of 
the software development process. Both 
USE and DMS, described in the Appendix, 
provide interactive tools to support their 
respective methodologies. 

The USE methodology features a life 
cycle of several phases [Wasserman et al. 
19861. Those phases that lead to creation 
of the human-computer interface begin 
with an initial analysis phase for describing 
activity, data, and end-user characteristics. 
Next is the external design of end-user 
interfaces, using an “outside-in” approach, 
working from end-user characteristics to- 
ward how the end-user will request system 
functions and how the system will display 
outputs. Then an executable prototype of 
the interface is created and the process is 
iterated until end-user and developer agree 
on the results. The RAPID/USE method- 
ology has been used successfully on a large 
number of both experimental and commer- 
cial system development projects. 

The methodology of the Dialogue Man- 
agement System [Hartson and Hix 19891 
also treats the human-computer interface 
as an integral, but clearly delineated, part 
of an application system. Traditional sys- 
tem development life cycles are primarily 
sequential, reflecting a “waterfall” process 
of moving from one distinct phase to an- 
other. Integration of interface management 
into the process can have a significant 
effect on this life cycle paradigm. Rapid 
prototyping assumes an important role. 
Also, evaluation of designs and feedback of 
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Figure 19. Star life cycle for human-computer interface development (from Hartson and 
Hi% [1989]). 

usability testing into redesign promote an 
iterative refinement approach that implies 
a truly cyclic process. 

Based on qualitative empirical observa- 
tions of dialogue developers producing 
different kinds of human-computer inter- 
faces, Hartson and Hix [1989] concluded 
that human-computer interface develop- 
ment most naturally occurs in “alternating 
waves” of two kinds of complementary ac- 
tivities. Typical activities that are bottom- 
up, synthetic, empirical, and related to the 
end-user’s view alternate with activities 
that are top-down, analytic, structuring, 
and related to a system view. These results 
suggest a “star” life cycle for human- 
computer interface development, as shown 
in Figure 19. This star life cycle, with eval- 
uation at its center, supports iterative re- 
finement and rapid prototyping. Because of 
its high interconnectivity, it allows almost 
any ordering of development activities and 
promotes rapid alternation among them. 

7. CONTROL STRUCTURES FOR HUMAN- 
COMPUTER INTERFACE MANAGEMENT 

Simply stated, control is the governing of 
logical sequencing within an interactive 
software system. Control flow, along with 
data flow, has always been a major concern 
in the software engineering of an interac- 
tive system. With the advent of special 
emphasis on the human-computer inter- 
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face and its separation from noninterface 
parts of the system, new software architec- 
tures for application systems arose and the 
placement of control within those architec- 
tures became a research question. The role 
and placement of control in the architec- 
ture of a UIMS has become a correspond- 
ingly interesting question. Control structures 
are used to accomplish the sequencing and 
synchronization of events during execution 
of an interactive application system. The 
control structure of an application system 
can influence the way in which the sys- 
tem is designed, represented, implemented, 
and prototyped and is thus an important 
concept in human-computer interface 
management. 

Control mechanisms within a target ap- 
plication system can be classified as either 
local or global. Local control is the control 
within dialogue or within computation. 
Dialogue control is local control for se- 
quencing of dialogue operations such as 
display of prompts, acceptance of an input, 
validation, mapping, and resolving input 
errors with the end-user. Computational 
control is local control (e.g., for looping) 
used within algorithms of the functional 
semantic routines. Global control is the con- 
trol that governs sequencing among dia- 
logue and computational components. 

Corresponding to the two basic types of 
dialogue discussed in the Introduction, 
there are the same two basic kinds of 
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Figure 20. Control structure in a problem/solution 
model. 

dialogue control-sequential and asyn- 
chronous. Historically, much attention has 
been given to control structures for sequen- 
tial dialogue, but recently emphasis on asyn- 
chronous control structures has emerged. 

7.1 Sequential Dialogue Control 

At the highest level in the traditional top- 
down system development process, the 
problem and the solution requirements 
must be stated. Whenever the first “proce- 
dural” statement of system functions ap- 
pears, it is often a graph-structured model 
indicating only the highest level of sequenc- 
ing within the problem solution. At this 
level, very little may be known about the 
dialogue content or the algorithmic details 
of the computation that will eventually be 
desired. The graph structure of Figure 20 
abstractly represents (without reference to 
a particular notation) the high-level control 
flow (sequencing) in the problem/solution 
model for some application. Each node of 
this graph could typically represent large 
amounts of both dialogue and computation. 

As further development takes place, 
more becomes known about the functional 
nature of the computation performed by 
the computational parts and the interac- 
tion performed by the dialogue parts. These 
parts now become separated in the repre- 
sentation and require a means for sequenc- 
ing them in the logical flow of the 
application system. 

Two models of sequential control are de- 
scribed in some of the early UIMS litera- 

ture [Rosenthal and Yen 19831: internal 
control and external control. With internal 
control, the control structure of the prob- 
lem/solution model is contained internally 
to the computational part, which invokes 
separately defined dialogue functions when 
input and output are required. External 
control is external to the computational 
part and is therefore, presumably, in the 
dialogue part. The computational part is 
divided into various functions that are in- 
voked by the dialogue part, which dictates 
the overall sequencing. Since the terms “in- 
ternal” and “external” are used with respect 
to the computational part, it is clear that 
the perspective of this work was from the 
computational viewpoint and not from that 
of the end-user. We will use the terms 
“computation dominant” control to refer to 
internal control and “dialogue dominant” 
control for external control. 

7.1.1 Computation Dominant Control 

Computation dominant control, also re- 
ferred to as “embedded control” [Kamran 
and Feldman 19831, is illustrated in Figure 
21. Application systems using prepackaged 
graphics software, but not UIMS, typically 
employ computation dominant control 
[Kamran and Feldman 19831. A “slave 
UIMS” (not a typical UIMS) is a UIMS 
that conducts dialogue under direction of 
the computational part [Rosenthal and Yen 
19831. Computation dominant control pro- 
vides a system structure that can be effi- 
cient in execution but lacks the flexibility 
necessary for easy modification of overall 
system sequencing. Also, because of the 
need to associate this overall system se- 
quencing with the dialogue, this kind of 
system structure is awkward for early 
interface prototyping. 

7.1.2 Dialogue Dominant Control 

With dialogue dominant control, illustrated 
in Figure 22, control resides in the dialogue 
component. Sequencing is dependent on 
end-user inputs. Many UIMS produce ap- 
plication systems that are more or less 
based on a dialogue dominant model 
of control. Most approaches to dialogue 
design representation based on state 
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Figure 21. Computation dominant control. 
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Figure 22. Dialogue dominant control. 

transition diagrams or BNF use, explicitly 
or implicitly, the dialogue dominant control 
structure. The AIH, an early UIMS devel- 
oped at George Washington University 
[Kamran and Feldman 19831, is represent- 
ative. The AIH Interaction Language In- 
terpreter interprets interface specifications 
and guides logical sequencing of interaction 
tasks. When computation is required, the 
Interaction Language Interpreter activates 
semantic routines and passes them the in- 
put values it has acquired from the end- 
user. Other examples of approaches and 
UIMS-many of which are presented in 
the Appendix-that produce application 
systems with dialogue dominant control in- 
clude IDS, FLAIR, ACT/l, RAPID/USE, 
and Jacob’s State Transition Diagrams. 

In the dialogue dominant configuration, 
dialogue of the application system is in 
charge of system execution, accepting 
inputs and invoking the computational 
component when semantic processing is 

needed. The computational part becomes a 
set of attached semantic functions. 

Despite their popularity, however, dia- 
logue dominant control structures have 
drawbacks. Perhaps the most serious short- 
coming relates to abstraction, a process 
used to control complexity in a design rep- 
resentation by hiding details inappropriate 
to a given level. Dialogue dominant control 
can result in increased complexity due to 
its tendency to mix levels of abstraction. 
Lexical and syntactic details and local dia- 
logue control are often represented at the 
same level with global control and invoca- 
tion of functional semantics. This is espe- 
cially evident in state transition diagrams 
where detailed functions such as token level 
(syntactic) error processing and help re- 
quest handling are often found at the same 
level of abstraction as global transitions 
among dialogue and computational states. 
This mixture of abstraction levels also un- 
necessarily violates dialogue independence. 
Because global control is mixed with dia- 
logue, the separation of developer roles is 
blurred. Global control design is now the 
responsibility of the dialogue developer. 

On the positive side, dialogue dominant 
control is well suited for rapid prototyping 
because it tends to provide a behavioral 
model of the entire system. By placing 
global control in the dialogue, this model of 
control easily provides a dialogue-oriented 
simulation of the behavior of an application 
system, even when much of the semantics 
is stubbed. For small applications these 
prototypes can evolve into a functional im- 
plementation. The architecture, however, 
is still basically that of a dialogue-oriented 
simulator, and its execution “requires in- 
creased (possibly substantial) computer 
systems resources” [Mason and Carey 
19831. Because the dialogue must deal with 
control flow for the whole target applica- 
tion system, dialogue dominant control 
does not, in general, offer a good top- 
down production-style system architecture 
[Gomaa and Scott 19811. 

7.1.3 Mixed Control 

Localization of control enforced by the 
computation dominant or dialogue 
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Figure 23. Mixed control. 

dominant model is not always desirable. 
In a mixed control structure, shown in 
Figure 23, computational modules can ini- 
tiate subdialogue to return intermediate re- 
sults, handle errors, provide end-user 
feedback, and request additional informa- 
tion [Hayes et al. 19851. Mixed control 
allows invocation of dialogue from the com- 
putational side and vice versa. This offers 
more flexibility but requires more discipline 
to maintain dialogue independence. The 
application programmer must subcontract 
dialogue design to the dialogue developer. 
Mixed control also means significant addi- 
tional requirements are imposed on the 
interface definition-particularly for inter- 
nal dialogue-within the UIMS [Hayes 
et al. 19851 to represent the additional 
complexity. 

7.1.4 Balanced Control 

Another separation, that of global control 
from both dialogue and computation, is also 
possible, yielding the control structure 
shown in Figure 24. Here, global control is 
at the top of a symmetrical, hierarchical 
structure. Early versions of DMS at Vir- 
ginia Tech were based on this balanced 
model of control, requiring an application 
system to be divided into three independ- 
ent, but communicating, components: dia- 
logue, computation, and global control 
[Hartson et al. 19841. (This was also shown 
in Figure 9.) The global control component 
governs sequencing among invocations of 
dialogue and computational functions. 

\ Control 

Dialogue Functions j Computation Functions 

Figure 24. Balanced control. 

7.2 Asynchronous Dialogue Control 

Event-based mechanisms are currently the 
primary underlying control and communi- 
cation techniques upon which asynchron- 
ous dialogue is constructed. End-user 
actions are sensed by device hardware and 
firmware (and possibly graphics software) 
and communicated to interface software as 
“events.” An example of this kind of event 
is passing of the mouse cursor over an 
interface icon. The need for corresponding 
system action(s) is communicated by the 
interface. The system can still be divided 
into components. Communication among 
components is typically by message pass- 
ing, and the mechanism becomes quite gen- 
eral by viewing each message within the 
system as an event. 

For asynchronous control, especially for 
direct manipulation dialogue, there can be 
difficult trade-offs in making the separa- 
tion into components. The direct manipu- 
lation interaction style brings the end-user 
cognitively closer to application semantics. 
To support this, the semantics must be 
brought closer to the end-user interface, 
something that tends to work against sep- 
aration of the components. There are two 
ways the application semantics can be 
brought closer to the dialogue component: 
Build more semantic processing power into 
the dialogue component (especially the in- 
put part) or establish close communication 
between the dialogue component and the 
computational semantics [ Hartson 19891. 
The trade-off between these two ap- 
proaches is essentially one that weighs a 
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Figure 25. Communication among run-time components. 

clean functional separation of components 
against the overhead of communication 
among them. 

As an example of the need for semantics 
in the end-user interface, consider the drag- 
ging of a Macintosh file icon toward the 
trash can icon for deletion. If the file icon 
passes over a folder icon, the folder icon is 
highlighted to remind the end-user that 
there is a semantic relationship between 
files and folders. If the end-user releases 
the mouse button at that point, the file is 
deposited in the folder. If echoing of input 
actions is to be accomplished within the 
dialogue component, the dialogue must 
have semantic information about the rela- 
tionship with the folder icon so that the 
icon can be highlighted as necessary. The 
alternative is for the dialogue component 
to communicate information about lower 
level input events to the computational 
component, which decides to highlight an 
object but must communicate back to the 
dialogue component to have the highlight- 
ing done. 

Figure 25 shows a typical configuration 
for run-time control and communication 
among components. Here the dialogue com- 
ponent is subdivided into input dialogue 
and output dialogue. The input dialogue 
component is aware of all end-user inter- 

face and application objects and is sensitive 
to any events affecting objects as a result 
of an end-user action. The difference be- 
tween sequential and asynchronous dia- 
logue control lies primarily in whether the 
overall synchronizing control-which when 
added to the asynchronous control makes 
it sequential-is explicit (for sequential) or 
implicit (for asynchronous). Even implicit 
control must be real at run time. Sequential 
control requires the top level of control 
logic to be expressed explicitly by the 
dialogue developer. A similar top layer of 
control logic is required to provide 
synchronism even for the asynchronous 
case. The asynchronous control mechanism 
works because the input events get sent to 
and handled by the proper objects, and 
control is yielded to those objects for pro- 
cessing. The dialogue developer is thus af- 
forded great freedom to isolate the behavior 
of individual objects and actions within 
complex direct manipulation, multi-thread 
dialogue without concern for the compli- 
cated network of control details in the high- 
level part of the structure. 

The strong linkage between input dia- 
logue for language parsing and graphical 
output dialogue necessary for responsive 
semantic feedback is discussed by Olsen et 
al. [1985] in the context of the GRINS 
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UIMS. Dialogue control in GRINS is based 
on interactive pushdown automata, which 
are generated from input descriptions and 
interpreted at run time. A layout editor 
is used to merge presentation information 
for output display under control of the 
automata. 

Programs running on the Macintosh are 
not entirely asynchronous because of their 
strong synchronous relationship to a main 
control loop, which is explicitly imposed on 
the programmer [Apple Computer 19851. 
The most significant consequence is the 
fact that, once a program is in control, 
control is absolute in the sense that no 
event (even outside the current window) 
can arbitrarily cause control to go else- 
where. It is the programmer’s responsibility 
to respond to any event and voluntarily 
give control back to the main loop. 

Mac App [Schmucker 19861 provides a 
high-level control structure in the form of 
an “application shell” for Macintosh pro- 
grammers. The programmer writes routines 
to handle each standard type of event, and 
Mac App offers the control framework in 
which to imbed these routines. Mac App 
also has its own library of routines for 
scrolling, selecting, and launching from 
“empty” windows, pulldown menus, dia- 
logue boxes, and desk accessories based on 
well-defined Macintosh interface stand- 
ards. The programmer can fill in the con- 
tents, customize them to a specific 
application, and make connections to com- 
putational routines via an extendible set of 
standard interobject messages. 

The Switchboard model of concurrent 
input synchronization [Tanner et al. 19861 
is a good example of dialogue control spe- 
cifically intended for concurrency. The 
Switchboard is used to route input from the 
multidevice stream to associated dialogue 
managers to handle various threads. Based 
on Harmony, a multitasking operating 
system with efficient message passing, 
Switchboard offers an approach that could 
implement the run-time components of 
Figure 25 as concurrent processes. Switch- 
board serves as the control and communi- 
cation center, connecting input messages 
from “couriers” to computational tasks. 

8. SUMMARY AND THE FUTURE OF 
INTERFACE MANAGEMENT 

Human-computer interface management, 
from a computer science viewpoint, focuses 
on the process of developing quality hu- 
man-computer interfaces, including their 
representation, design, implementation, 
execution, evaluation, and maintenance. 
Important concepts of human-computer 
interface management have been presented 
in this survey, providing a framework for 
classifying and comparing approaches to 
human-computer interface management. 
Dialogue independence is a characteristic 
that separates design of the interface from 
design of the computational component of 
an application system so that modifications 
in either tend not to cause changes in the 
other. Such independence allows easy mod- 
ification of dialogues to meet the changing 
needs of end-users. The role of a dialogue 
developer, whose main purpose is to create 
interfaces that incorporate human-com- 
puter interface guidelines, is a direct result 
of the dialogue independence concept. 
Structural models of the human-computer 
interface serve as frameworks for under- 
standing the elements of human-computer 
interfaces and for guiding the dialogue de- 
veloper in their construction. Representa- 
tion of the human-computer interface is 
accomplished by a variety of notational 
schemes for describing the interface. Nu- 
merous kinds of interactive tools for hu- 
man-computer interface development free 
the dialogue developer from much of the 
tedium of “coding” dialogues and facilitate 
concentration on incorporating human fac- 
tors into interfaces. The early ability to 
observe behavior of the interface-and in- 
deed of the whole application system-pro- 
vided by rapid prototyping, increases 
communication among system designers, 
implementers, evaluators, and end-users. 
This increased communication results in 
improved human-computer interfaces. A 
system created by a dialogue developer and 
an application programmer working in par- 
allel must be developed by using an ap- 
proach that gives equal emphasis to both 
dialogue and computational components of 
the software system. Such methodologies for 
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interactive system development consider in- 
terface management to be an integral part 
of the overall development process and give 
emphasis to evaluation in the development 
life cycle. Finally, there are several differ- 
ent types of control structures that govern 
how sequencing among dialogue and 
computational components is designed 
and executed. 

Visions of future work in human-com- 
puter interface management are very excit- 
ing, offering opportunities in many areas 
within computer science, including formal 
modeling, graphics, software engineering, 
automated environments, database man- 
agement, artificial intelligence, human fac- 
tors, operating systems, and system 
performance evaluation. Interface support 
environments will become integrated into 
the operating system and hardware archi- 
tecture. The current trend is away from the 
commonly used alphanumeric keyboard in- 
put and frame-oriented, screen-at-a-time 
displays toward graphics, dynamic displays, 
and unusual devices and communication 
media. With stereo 3-D graphics projected 
within helmets, end-users will “walk” 
through alternative realities of applications 
from molecular structures to architectural 
designs, navigating with body gestures and 
voice commands. Development methodol- 
ogies and tools will have to accommodate 
devices, interaction styles, and input tech- 
niques we cannot now imagine. Direct ma- 
nipulation will be used to even greater 
extents, and more attention will be given 
to helping a dialogue developer produce 
complex and dynamic output displays. 
There is an increasing need for a taxonomy 
of interface features and functions to help 
organize the field. 

The trend toward more complex inter- 
faces in which dialogue and its semantics 
are more tightly interwoven [Tanner and 
Buxton 19841 will present challenges to 
extend dialogue independence design tech- 
niques. The shift in emphasis toward asyn- 
chronism, concurrency, and multi-thread 
dialogue will continue. Important contri- 
butions will come from artificial intelli- 
gence, including knowledge-based systems 
for application areas, expert systems to aid 
dialogue design, and improved natural lan- 
guage processing. More “intelligence” will 

be used in interfaces to adapt to the varia- 
bility among human users. Interface man- 
agement and software engineering will 
continue to share the trend toward less code 
writing and more automatic code genera- 
tion. Human-computer interface manage- 
ment will receive an increasing share of 
attention within the interactive system de- 
velopment process. 

Progress on the computer science side of 
human-computer interface management 
will spawn requirements for future work by 
our human factors colleagues. For example, 
now that rapid prototyping is available, its 
effective use in the iterative refinement 
process to produce quality interfaces must 
be more thoroughly explored and exploited. 
Although summative evaluation will con- 
tinue to be used for controlled testing of 
isolated principles and will continue to con- 
tribute to the theory of human factors for 
human-computer interfaces, formative 
testing of entire interfaces and entire sys- 
tems will become a part of the development 
process [Williges 1984; Wixon et al. 19831. 
Similarly, stronger inputs from the cogni- 
tive and behavioral sciences will contribute 
to a better understanding of the basic proc- 
ess of human-computer interaction and 
will direct future computer science work in 
this area. One of the most significant of 
these is the need for improved usability in 
the UIMS themselves. 

The tools and techniques surveyed in this 
article will not remain solely in the domain 
of system developers. Much of what we 
have discussed here will be integrated into 
large applications themselves, becoming di- 
rectly available to increasingly sophisti- 
cated end-users. Database management 
systems will be offered as utilities built into 
applications with a large variety of inter- 
face options. End-user performance meter- 
ing aids will accompany commercial 
software. Tools similar to those used by 
dialogue developers will become available 
to end-users for customizing their own 
interfaces. 

We have presented many concepts and 
ideas in the field of interface management; 
now it is time to see if they will really work. 
This “seeing” will involve significant 
evaluation effort and technology trans- 
fer [Ehrlich 19851 to real-world application 
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environments-everything from the space 
shuttle to the ubiquitous personal com- 
puter. Many of the easy questions are an- 
swered, many difficult questions remain. 
Human-computer interface management is 
currently much more art than science. 
Making the transition to a more scientific 
approach, while maintaining a human per- 
spective, promises to be a challenge for 
human-computer interface management 
research well into the future. 

APPENDIX: A SAMPLER OF SYSTEMS 
FOR HUMAN-COMPUTER INTERFACE 
MANAGEMENT 

The concepts discussed in the main part of 
this paper establish a framework for the 
management of human-computer interface 
development. Embodiment of these con- 
cepts requires application system develop- 
ment facilities and tools that incorporate 
the concepts, from the first phases of design 
all the way through to implementation and 
into the iterative refinement and mainte- 
nance phases. 

This appendix is a sampler that describes 
several systems, which, to varying extents, 
manage representation, design, implemen- 
tation, prototyping, execution, evaluation, 
and maintenance of interfaces for interac- 
tive human-computer systems. We chose 
representative systems for their breadth of 
scope and the variety of ways in which 
interface management and the entire ap- 
plication system development process is ap- 
proached. Many of these systems represent 
foundational, landmark pieces of work 
(either research or commercial) and, as 
such, deserve recognition. Most (BLOX, 
COUSIN, DMS, GWUIMS, Open Dia- 
logue, RAPID/USE, Prototyper, State Dia- 
gram Specification Interpreter, toolkit 
UIMS, and the University of Alberta 
UIMS) are systems for management of the 
interface across many phases of the life 
cycle, whereas a few (FLAIR II and RIPL) 
are primarily rapid prototypers. These sys- 
tems generally go beyond the realm of lim- 
ited application-specific formats, devices, 
and interaction techniques and address the 
much more complex issues at the very heart 
of human-computer interface manage- 

ment. The rapid prototypers were included 
in this appendix to emphasize the impor- 
tance of this stage of the life cycle on inter- 
active system development and to present 
a variety of approaches to prototyping. 

To collect the data for the systems in this 
appendix, we sent a sizable questionnaire 
to the groups developing each of these sys- 
tems. We used information from the ques- 
tionnaire extensively (in some cases, 
verbatim, with permission) to prepare this 
section, which is arranged essentially like 
that of the questionnaire: The system is 
described in general and then set in the 
conceptual framework developed in the pa- 
per. Several other features that classify and 
describe such systems, but are not explicit 
concepts of interface management, are also 
given. The systems are presented in alpha- 
betical order. They are intentionally not 
compared since the purpose of this appen- 
dix is rather to give the reader an overview 
of each system. Descriptions are intended 
to be complete but not necessarily detailed, 
since many details have already been given 
in other sections of the paper when specific 
parts of these systems were used to illus- 
trate a particular concept. The complete 
form of the questionnaire, including expla- 
nations of many of the terms, follows. 

Format of Questionnaire 

1. General description of system 

2. Interface management concepts 

ba: 

i: 
e. 
f. 

h”: 

Dialogue independence: 
Structural model of interface: 
Representation of interface: 
Interface development tools: 
Dialogue developer role: 
System development methodology: 
Rapid prototyping: 
Control structure: 

3. Features of system 

a. Internal representation of interface 
definitions (e.g., tables, relational 
databases, executable code): 
l At implementation time: 
l At prototyping time: 
l At run time: 
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b. Lexical constraints (e.g., Does your 
system handle character-at-a-time 
validation of end-user input?): 

c. Input dialogue (Is your system used 
to produce dialogue to extract inputs 
from the end-user? If so, how does 
this dialogue validate (check for er- 
rors in) end-user input, or are inputs 
validated by the computational com- 
ponent?): 

d. Output dialogue (Is your system used 
to format and display data dependent 
computational results-e.g., infor- 
mation retrieved from a database- 
as well as to develop input-related 
dialogue? If so, how does it deal with 
these types of output for which the 
form and values are not bound (or 
known) until run time?): 

e. Relationship between input and out- 
put dialogue (How do you make this 
distinction, if you do, in your ap- 
proach? How do you classify things 
like error messages, prompts, and 
help information in this regard?): 

f. Help (Do your interface development 
tools provide specifically for the de- 
velopment of help information? If so, 
how?): 

g. Pragmatics (Does your system or 
your work address end-user gestures 
and actions, physical device charac- 
teristics, and other “pragmatic? of 
interfaces? If so, how?): 

h. Multiple input devices (Can more 
than one physical input device be 
active at one tim,e? If so, how?): 

i. Support environment and graphics 
(What hardware and software does 
your system run on? Does your sys- 
tem make extensive use of graph- 
ics?): 

4. Miscellaneous questions 

a. Human factors built in (Do the tools 
of your system enforce specific hu- 
man factors principles within the dia- 
logue development process?): 

b. Sequential versus asynchronous dia- 
logue (Do your dialogue development 
tools produce dialogue that is essen- 
tially sequential or can they also pro- 
duce asynchronous dialogue?): 
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c. Generality of interaction style (Is your 
system oriented toward a specific in- 
teraction style-e.g., menus, graphi- 
cal input, form filling-or is it more 
general?): 

d. Interface evaluation (Does your work 
address evaluation of interfaces? If 
so, how?): 

5. Implementation 

,“: 

i: 

e. 

f. 

Languages: 
Operating system: 
Date work begun: 
Status (experimental, internal prod- 
uct, commercial product): 
Personnel (computer scientists, hu- 
man factors experts, psychologists, 
other): 
Self-creating (Could your system be 
used to design/create itself?): 

BLOX Graphics Builder 

1. General Description of System 

BLOX Graphics Builder, developed and 
marketed by Rubel Software of Cambridge, 
Massachusetts, is designed to reduce the 
amount of programming required to create 
graphics application screens, menus, and 
icons [Rubel 19821. The end-user interface 
is developed interactively using the BLOX 
direct manipulation tools, TableGEN, and 
SymbolEDIT. 

The BLOX screen editor, TableGEN, is 
used interactively to draw interface screen 
layouts and menus with pen or mouse. An 
interface can contain any number of screen 
layouts, including multiple work, message, 
and menu areas. Menus contain text and 
graphical icons. Each menu item has an 
associated prompt string and action sub- 
routine, supplied either by BLOX or by the 
application developer. BLOX provides de- 
faults for all interface attributes and re- 
sponses. These defaults can be changed by 
the application developer. 

With the BLOX icon editor, Symbol- 
EDIT, pen or mouse is also used interac- 
tively to draw graphical icons and store 
them in sets. Each set of icons can be later 
retrieved and edited interactively. Icons 
can be used as menu items in an application 
interface or as part of an application data 
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display, such as a diagram or chart that 
includes predefined symbols. Icons can be 
displayed with any scale and rotation. 

BLOX HelpGEN automatically gener- 
ates an on-line help keyword file for an 
application. This file contains a keyword 
for each menu item or other area of the 
application screen. Any standard text edi- 
tor can be used to insert customized help 
information into this file. On-line help is 
retrieved at run time by pressing a “help” 
button and pointing at the part of the 
screen in question. 

Two BLOX Subroutine Libraries are 
provided for use with BLOX-built applica- 
tions. These libraries provide many pre- 
coded functions for the application 
developer. The BLOX User Interface Li- 
brary is a collection of subroutines for 
query and manipulation of the end-user 
interface. These include displaying prompt 
lines, pop-up menus, new screen layouts, 
icons, grids, and many more. The BLOX 
Graphics Library is a more traditional 
graphics subroutine library, with the ability 
to draw graphics primitives such as lines, 
circles, arrows, text, and filled areas. 

BLOX facilitates rapid prototyping by 
allowing dialogue developers to draw sym- 
bol sets and interface screens quickly and 
then “testdriving” the end-user interface 
before linking to application code. BLOX 
development tools enable developers to 
produce a standard end-user interface for 
all graphics applications, regardless of 
hardware configuration. BLOX can be used 
to develop interactive graphical end-user 
interfaces for existing code, as well as for 
new applications under development. 
BLOX, written in FORTRAN, can be used 
with any programming language that is 
compiled and callable from FORTRAN. 

Once an interface has been designed, 
BLOX automatically links it to application 
code through the BLOX Interaction Han- 
dler. The Interaction Handler responds to 
all end-user or machine-generated input. 
BLOX supports input devices such as pen, 
mouse, and keyboard and input techniques 
such as graphical menu selection and mul- 
tiple button input. Typical response to in- 
put includes display of graphics, prompt 
messages, new screen layouts, pop-up 
menus, or calls to coded subroutines. Coded 

subroutines can be either BLOX or devel- 
oper supplied and can be written in any 
compiled programming language. BLOX, 
being machine, device, and application in- 
dependent, has been used to develop appli- 
cations in diverse scientific, engineering, 
and academic areas. 

2. 

a. 

b. 
C. 

d. 

e. 

f. 

g. 

h. 

Interface Management Concepts 

Dialogue independence: Interface devel- 
opment is completely separated from 
that of computational code. Application 
action routines can be associated with 
menu buttons during menu design, but 
the two parts of the application are 
treated independently. 
Structural model of interface: None. 
Representation of interface: Done us- 
ing interactive tools, TableGEN and 
SymbolEDIT. 
Interface development tools: Symbol- 
EDIT lets the dialogue developer pro- 
duce iconic symbol sets that can be 
accessed during application screen and 
menu design. TableGEN lets the devel- 
oper indicate where work areas, menu 
areas, and message areas are desired. In 
the case of menu areas, the contents are 
also represented interactively. All areas 
are given default properties, which can 
be easily changed by the developer. 
Dialogue developer role: Role is sup- 
ported by direct manipulation tools for 
interface development. 

System development methodology: None. 
Rapid prototyping: Simple end-user in- 
terfaces can be designed quickly. 
TableGEN lets the developer produce 
an interface with any combination of 
work, menu, and message areas. Once 
an interface has been designed in a 
TableGEN session, the end-user can 
“test-drive” it. The interface is shown 
full screen before any application code 
is linked. Several test-drive sessions are 
generally run before an interface is 
linked into application code. 

Control structure: BLOX is a dialogue 
dominant or external control UIMS. It 
likes to be the “controller” of the appli- 
cation. The application and interface, 
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3. 

a. 

b. 

c. 

a. 

e. 

f. 

h. 

1. 

however, can be influenced by compu- 
tational functions, as well as by input 
from the end-user. 

Features of System 

Internal representation of interface defi- 
nitions 

l At implementation time: Tables gen- 
erated from drawings during a “test 
drive.” 

l At prototyping time: Tables. 
l At run time: Tables compiled into bi- 

nary. 

Lexical constraints: Handled as input 
dialogue. 4. 
Input dialogue: End-user input valida- 
tion is the responsibility of the compu- a* 
tational component. 
Output dialogue: Must be programmed 
by an application programmer. 
Relationship between input and output 
dialogue: Three BLOX area types- b 
work, menu, and message-provide the . 
standard for distinguishing between in- 
put and output dialogue. BLOX work 
areas are for both end-user input and 
application output and display. Menus 
are solely for end-user input. Message c. 
areas are solely for application output. 
Error messages, prompts, and help are 
contained in message areas. Given these 
distinctions, it remains the decision of 
the application designer as to where and 
how these areas are used. d. 

Help: A BLOX development tool, 
HelpGEN, automatically generates help 
keyword files for each BLOX area and 
menu item. These files can then be ed- 
ited with a text editor. 
Pragmatics: BLOX is based on interac- 
tive end-user input, through the use of 
menus and interactive work areas. 

systems (SUN, Silicon Graphics, Mass- 
camp, Cadmus, and Orcatech). BLOX 
includes an implementation of the Core 
graphics library. Although BLOX is 
written in FORTRAN, it can be used 
with any programming language that is 
compiled and callable from FORTRAN. 
BLOX was designed specifically for 
graphics applications. Icons are devel- 
oped by the application developer and 
then used in the application at run time. 
BLOX areas are generally used for 
graphics display, although developers 
can use text in conjunction with 
graphics. 

Miscellaneous Questions 

Human factors built in: There are very 
few constraints placed on a dialogue de- 
veloper. BLOX helps developers build 
applications quickly but does not elimi- 
nate the possibility of a badly designed 
interface. 
Sequential versus asynchronous dia- 
logue: BLOX is based on sequential, 
turn-taking dialogue. End-user input 
triggers a computer process, display, or 
other reaction. 
Generality of interaction style: BLOX is 
designed around graphical menus. Items 
are selected by pointing, rather than by 
typing a selection’s number. End-user’s 
input can also be entered through the 
graphical work area. 
Interface evaluation: Interfaces are eval- 
uated during the design process (see ear- 
lier explanations of “test drive”) by the 
application developers and others. 
BLOX itself makes no attempt to eval- 
uate an interface. Because BLOX inter- 
faces are easily modified, end-users can 
also critique interfaces. 

BLOX Graphics Builder requires spe- 5. /mn/emenration 
cific device drivers for particular graph- ’ 
its terminals. a. Languages: FORTRAN. 

Multiple input devices: Single process b. Operating system: VMS, UNIX. 

dialogue system. c. Date work begun: 1982. 

Support environment and graphics: d. Status: Commercial product. 
Currently runs on VAX/VMS, VAX/ e. Personnel: Four computer scientists; 
UNIX, and several 68000-based UNIX three sales/marketing. 
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f. Self-creating: Yes. BLOX Graphics 
Builder’s tools are based on the three 
BLOX areas and could have been built 
with BLOX. BLOX has been used to 
continue development of the product. 

COUSIN 

1. General Description of System 

The COUSIN (Cooperative User INterface) 
system [Hayes 1985; Hayes and Szekely 
1983; Hayes et al. 1981, 19851 of Phil 
Hayes, Eugene Ball, Raj Reddy, Richard 
Lerner, and Pedro Szekely at Carnegie- 
Mellon University has an artificial in- 
telligence flavor and deals with natural 
language understanding but nicely illus- 
trates some interface management con- 
cepts, especially dialogue independence or 
“tool independence.” 

Early COUSIN research revolved around 
definition of a quality interface that sup- 
ports graceful interaction just as human- 
to-human communication is graceful and 
robust. Such interaction thus goes well be- 
yond the traditional principles of human- 
computer interaction and into the realm of 
natural language understanding [Hayes 
and Reddy 19831. Because of the enormous 
difficulties of producing such an interface, 
the researchers propose to amortize this 
effort by building a single, application-in- 
dependent (“tool-independent”) system to 
serve as the end-user interface for a variety 
of subsystems rather than developing a sep- 
arate interface for each application system. 
The implication in Hayes et al. [1981] is 
that there is one interface for many appli- 
cation systems (tools) and that interface 
does not contain information about a par- 
ticular application but obtains a declarative 
definition of the application from a tool 
description database. A subsequent report 
[Hayes and Szekely 19831 states that this 
declarative database contains definitions of 
the end-user communication (interface) 
needs of an application system and that a 
single tool-independent interface inter- 
preter is used to instantiate the interface 
for that application system. A significant 
contribution of the COUSIN work is that 
its dialogue-dominant control structure de- 
parts from strict sequential dialogue and 

handles concurrency of many communica- 
tion media (e.g., simultaneous pointing, 
speaking, and typing). 

More recent work on COUSIN has 
evolved an interface definition centered 
around form-based interface abstractions, 
expressed in a language that is interpreted 
[Hayes 19851. Such an interface definition 
consists of a declaration of the form name 
followed by a sequence of field definitions 
containing attributes. COUSIN’s interface 
definition language is based on a commu- 
nication abstraction between end-user and 
application in which communication takes 
place through a set of value-containing 
“slots’‘-one slot for each piece of infor- 
mation the end-user and application need 
to exchange. A simple print application 
might have slots for its parameters, such as 
the file to print and number of copies. Ex- 
ternal interface definitions expressed in 
form-based abstractions are used by COU- 
SIN to provide a wide variety of applica- 
tions with consistent, quality interfaces. 
End-users of systems produced with COU- 
SIN interact with those systems by filling 
forms. End-users specify parameters to a 
command by filling in the appropriate fields 
in the form (in any order) and then execute 
the command. Further interaction with the 
command while it is running is also done 
by displaying or changing data in fields. 
Fields in the form correspond to slots in 
the interface definition. At run time there 
are two processes per application system: 
One is the application system itself and the 
other is COUSIN, operating to support the 
application system. COUSIN interprets the 
interface description, puts bits on the 
screen, and interprets keystrokes on behalf 
of the application system. Future efforts 
will concentrate on providing a larger spec- 
ification process. 

2. Interface Management Concepts 

a. Dialogue independence: Yes. The dia- 
logue developer is encouraged to think 
in terms of pieces of data exchanged by 
the application and the end-user, not in 
terms of how data are displayed or how 
the end-user modifies it. This is done 
with “slots.” Application programs ac- 
cess slots with a set of accessor routines. 
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The end-user accesses slots via a graph- 
ical form-based representation of the 
slots. 
Structural model of interface: None. 
Representation of interface: Dialogue is 
represented by defining “interaction 
modes” of fields. The interaction mode 
specifies both how to display a field 
(icon, text string, menu, etc.), and how 
to interpret input events directed to that 
field. Control of the dialogue (what to 
do next) is not represented explicitly. 
Dialogue representation consists of a set 
of [attribute, value] pairs for each field 
of the form. 
Interface development tools: The [attrib- 
ute, value] pairs are represented as a 
text file with a text editor. COUSIN also 
has a graphical editor that can be used 
to edit the compiled version of the rep- 
resentation and is capable of generating 
a textual description. The COUSIN in- 
terface to construct the [attribute, 
value] pair that is the dialogue represen- 
tation has a field for each attribute; the 
value of the field is the value of the 
attribute. A layout editor is a WYSI- 
WYG editor to edit the layout of the 
end-user form. A mouse can be used to 
move edges of fields or to enter numbers 
in another form to represent coordinates 
of fields. 

Dialogue developer role: COUSIN uses 
two roles. An application program 
builder develops the application pro- 
gram using a set of routines provided by 
COUSIN to access or update the values 
of slots. A dialogue developer, called an 
end-user interface writer, develops the 
interface description using the tools de- 
scribed above. The application program 
builder and the dialogue developer have 
to agree on the number and type of 
slots. 

f. System development methodology: No 
particular methodology is used. Several 
“nontoy” systems, however, have been 
developed using COUSIN. Development 
is iterative, starting with a simple appli- 
cation program with a few slots and then 
adding more functionality by adding 
more slots (and commands). 

h. 

3. 

a. 

b. 

C. 

Rapid prototyping: COUSIN allows easy 
building of facades/mockups of appli- 
cation programs. COUSIN can generate 
a usable form for an application pro- 
gram from the interface description, and 
there is an application program called 
“cappl” (COUSIN-application), which 
can be used as a dummy with any inter- 
face description. Forms with fields for 
unimplemented commands are easily 
produced. The end-user can interact 
with the form, but upon invoking an 
unimplemented command, a “Not Yet 
Implemented” message is displayed. 

Control structure: Sequencing is mostly 
external, controlled by the end-user. 
When the application program needs 
some data, however, it can take the ini- 
tiative and force the end-user to respond 
to questions. This second mode is in- 
tended to be used only when necessary. 
COUSIN encourages the external, 
dialogue dominant method of com- 
munication. 

Features of System 

Internal representation of interface defi- 
nitions 

l At implementation time: Complicated 
set of data structures that represent 
“slot” values. 

l At prototyping time: Complicated set 
of data structures that represent 
“slot” values. 

l At run time: Complicated set of dat.a 
structures that represent “slot” val- 
ues. 

Lexical constraints: COUSIN takes all 
characters and inserts them into a 
buffer. Validity can be checked when a 
“break” key is hit, but each interaction 
mode can check its input at any point. 
In this case input is not validated a 
character at a time. 

Input dialogue: COUSIN extracts all in- 
put from the end-user. COUSIN knows 
about a few data types (e.g., integer, 
string, Boolean) and has a very simple 
constraint language. It can recognize 
simple errors and interact with the 
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d. 

e. 

f. 

g- 
h. 

1. 

end-user to correct them before giving 
the data to the application program. 
COUSIN cannot, however, recognize 
application program-specific semantic 
errors. 
Output dialogue: COUSIN updates a dis- 
play whenever a change is made to a 
slot, which is controlled by the interac- 
tion mode of that slot. 
Relationship between input and output 
dialogue: Such components as prompts 
or error messages are not explicitly clas- 
sified as either input or output. In COU- 
SIN each interaction mode has its input 
strongly linked with its output, but in- 
teraction modes are independent of each 
other. Dialogue is divided into “chunks,” 
each chunk being an interaction mode 
that is not divided into an input and an 
output part. 

Help: COUSIN emphasizes a help sys- 
tem, generating two levels of help. Short 
help is a line of text specifying the pur- 
pose of a field. Long help allows the end- 
user to traverse a network of help frames 
describing the application program. 
Short help messages are represented in 
the interface definition. Help frames for 
long help are generated by COUSIN 
from the run-time state, the interface 
definition, and a text file. 
Pragmatics: No. 
Multiple input devices: Both keyboard 
and mouse are active at the same time. 
Events from devices are represented as 
messages from processes. Hence, events 
from multiple devices appear mixed with 
each other in a message queue and are 
handled by COUSIN with priorities by 
“time slicing” between them. 
Support environment and graphics: 
COUSIN runs on Perq workstations 
with graphics display and mouse. The 
operating system is “Accent,” which 
provides fast message-based communi- 
cation between multiple processes. 
COUSIN runs as a separate process 
from the application program for which 
it provides an interface. COUSIN makes 
moderate use of graphics. A portion of 
the screen can be defined.as a graphics 
area and information from this area 

passed to the application program. The 
application program directly calls 
graphics package routines to paint that 
area. 

4. Miscellaneous Questions 

a. 

b. 

C. 

d. 

Human factors built in: COUSIN pro- 
duces interfaces that are fill-in-the- 
blank forms. No constraints, however, 
are placed on the format and content of 
these forms. 
Sequential versus asynchronous dia- 
logue: Since COUSIN and the applica- 
tion program execute in separate 
processes, the end-user can interact 
with the form of an application program 
even when the application program is 
computing. For example, an end-user 
can enter parameters for the next com- 
mand while the current one is executing. 
A locking mechanism prevents interfer- 
ence between the end-user and the ap- 
plication program. 
Generality of interaction style: Form fill- 
ing, with limited graphical interaction. 
Interface evaluation: No. 

5. Implementation 

a. Languages: Dialect of Pascal. 
b. Operating system: Accent. 
c. Date work begun: 1981. 
d. Status: Experimental. 
e. Personnel: Three computer scientists. 
f. Self-creating: The tool to edit interface 

descriptions is itself a form produced by 
COUSIN. 

Dialogue Management System (DMS) 

1. General Description of System 

The Dialogue Management System (DMS) 
[Hartson et al. 1984; Hix and Hartson 1986; 
Roach et al. 19821 being developed at Vir- 
ginia Tech by H. Rex Hartson, Deborah 
Hix, and Roger W. Ehrich, is a comprehen- 
sive system for interface management. An 
application system developed using DMS 
is viewed as having three components: a 
dialogue component through which all 
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communication between the end-user and 
the application system is carried out, a 
computational component that contains all 
semantic processing algorithms, and a 
global control component that governs 
logical sequencing among dialogue and 
computational components. Dialogue in- 
dependence forms the fundamental philos- 
ophy of DMS and helps ensure easy 
modification of the interface, allowing two 
or more very different interfaces to be used 
with the same computational and global 
control components. 

Interface management is considered to 
be an integral part of the overall software 
engineering process. To support this prem- 
ise, a system development methodology and 
evaluation-centered (“star”) life cycle have 
been produced as part of the DMS research. 
The methodology (called the SUPERvisory 
Methodology And Notation, or SUPER- 
MAN, in early versions) integrates devel- 
opment of all three components of an 
application system using a technique called 
supervised flow diagrams to represent the 
design of a system. Supervised flow dia- 
grams are an executable representation of 
control flow and data flow in all compo- 
nents of the target application system being 
developed using DMS. 

The DMS Design-Time Facility provides 
an integrated set of tools for interactively 
developing each of the three components. 
A dialogue developer designs, implements, 
and modifies the dialogue component (the 
human-computer interface) using a set of 
tools (called the Author’s Interactive Dia- 
logue Environment, or AIDE, in early ver- 
sions). These direct manipulation tools 
allow the dialogue developer to work with 
objects, rather than source code, when de- 
veloping an interface. DMS also contains a 
graphical programming language (GPL) ed- 
itor that is used interactively to develop 
supervised flow diagrams for the global con- 
trol and computational components. A spe- 
cialized version of the GPL editor, used 
to develop supervised flow diagrams in 
the dialogue component, is constrained to 
conform to the DMS structural dialogue 
transaction model. The computational 
component is designed and implemented 
largely using a conventional programming 
support environment. 
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The rapid prototyper, called the Behav- 
ioral Demonstrator, allows early and con- 
tinuous evaluation and modification of an 
application system design. At run time, dia- 
logue executors and mechanisms for linking 
all the components support execution of 
application systems produced by DMS. 

An evaluation of DMS has shown its 
tool-based approach to interface develop- 
ment to be faster than conventional meth- 
ods involving source coding. In an empirical 
study, the use of AIDE for implementing 
an interface produced a nearly four-to-one 
improvement in speed over the use of pro- 
gramming for implementing the same in- 
terface. The DMS methodology and 
approach have been used successfully to 
develop a number of substantial applica- 
tions, including a relational database, a 
document storage and retrieval system, and 
DMS itself. Two versions of DMS have 
been implemented, and DMS 3.0 was due 
for completion in late 1988. DMS 3.0 is 
built on a Smalltalk- (object-oriented) 
platform running on a Macintosh II. DMS 
3 makes more extensive use of direct ma- 
nipulation in its own interface than pre- 
vious versions did. DMS 4 will have a 
greatly expanded capability to produce di- 
rect manipulation, multi-thread, and asyn- 
chronous dialogue in application system 
interfaces. 

2. 

a. 

b. 

C. 

Interface Management Concepts 

Dialogue independence: Dialogue is sep- 
arated from computation and global 
control at design time; raw dialogue to- 
kens to and from the interface are 
mapped to normalized tokens for use 
throughout the rest of the application 
system. 
Structural model of interface: A dialogue 
transaction model describes the human- 
computer dialogue at three linguistic 
levels: semantic, syntactic, and lexical. 
Representation of interface: At the se- 
mantic level, dialogue transactions are 
represented in supervised flow dia- 
grams. At the syntactic and lexical lev- 
els, AIDE tools are provided for 
representing such interface objects as 
screen layouts, input definitions, and 
token mappings. 



a. 

e. 

f. 

g- 

h. 
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Interface development tools: The dia- 
logue developer does not write source 
code to implement dialogue but rather d. 
uses AIDE to produce interface objects 
by direct manipulation. 
Dialogue developer role: Yes; it uses 
AIDE to implement interfaces. 
System development methodology: The 
SUPERvisory Methodology And Nota- e. 
tion (SUPERMAN) is used to develop 
a human-computer system through all 
stages of an evaluation-centered (“star”) 
development life cycle. 
Rapid prototyping: The Behavioral 
Demonstrator is used to execute super- 
vised flow diagrams, demonstrating 
parts of the evolving application system f. 
as they are developed. Stubs and tem- 
porary values for yet undefined vari- 
ables are provided for those parts that 
are not yet developed. 
Control structure: Balanced control in g. 
which the global control component 
governs sequencing among dialogue and 
computational functions. 

3. Features of System 
h. 

a. 

b. 

C. 

Internal representation of interface defi- 
nitions 
l At implementation time: Relations in 

database. 
l At prototyping time: Relations in da- . 

tabase. 1. 

l At run time: Relations in database. 
Lexical constraints: End-user inputs are 
processed a single end-user action at a 
time, allowing immediate validation of 
inputs. 
Input dialogue: At run time, lexically 
validated keystrokes or other actions 4, 
from the end-user are collected into to- 
kens (interactions) as directed by the a. 
input definition. These tokens are syn- 
tactically validated and collected into 
sentences (transactions, e.g., a complete b. 
command with its operands). Actions, 
interactions, and transactions are de- 
fined by the dialogue developer at design 
time using AIDE. Validated and nor- 
malized tokens of a transaction are 
passed, via the global control compo- 

nent, to the computational component 
at run time. 
Output dialogue: At run time, a dynamic 
output executor accepts results of com- 
putational processing and displays re- 
sults to the end-user based on definition 
of the output produced by the dialogue 
developer using AIDE at design time. 
Relationship between input and output 
dialogue: Dialogue objects can be defined 
as both output and input objects so that 
these two kinds of dialogue can be linked 
(e.g., a graphical object can be displayed 
as computational output and then 
picked for manipulation by the end- 
user). 
Help: Dialogue development tools do not 
provide specifically for the development 
of help information but can be used to 
produce help just as they are used for 
any part of the dialogue. 
Pragmatics: Physical devices and end- 
user gestures are represented at the low- 
est level of the interface definition; 
above this, interface definition is device 
independent. 
Multiple input devices: Theoretically, 
any number of physical input devices 
can be active at one time if the dialogue 
developer designs the interface this way. 
The run-time dialogue executor has the 
capability to poll devices and read the 
appropriate one(s). 
Support environment and graphics: A 
Silicon Graphics IRIS 2400 Worksta- 
tion running UNIX and Smalltalk- 
on a Macintosh II. Graphical display 
objects can be produced with a graphical 
editor, one of the DMS interface devel- 
opment tools. 

Miscellaneous Questions 

Human factors built in: No; theoretically 
there are no constraints on the inter- 
face. 
Sequential versus asynchronous dia- 
logue: All versions of DMS support a 
broad variety of sequential dialogue in- 
teraction styles. Direct manipulation 
and asynchronous dialogue are sup- 
ported in DMS 3 and, to a greater, ex- 
tent, will be in DMS 4. 
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C. 

d. 

5. 

a. 

b. 

C. 

d. 
e. 

f. 

Generality of interaction style: Any in- 
teraction style can, in theory, be created 
and executed using DMS development 
tools. 
Interface evaluation: Metering of end- 
user input is allowed at each of the three 
linguistic levels. Metering of dialogue 
development activities will be provided 
in the future. 

implementation 

Languages: DMS 2, -C; DMS 3, - 
Smalltalk-80. 
Operating system: DMSB, -UNIX (on 
a Silicon Graphics IRIS 2400 Worksta- 
tion); DMS 3 -Smalltalk (on a Macin- 
tosh II). 
Date work begun: DMS 1, -1980; DMS 
2, -1985; DMS 3, -1987. 
Status: Experimental research product. 
Personnel: Three computer scientists, 
varying numbers of graduate students 
and programmers. 
Self-creating: In theory, yes; implemen- 
tation is not advanced enough at this 
time for DMS to produce itself. 

FLAIR II 

1. General Description of System 

FLAIR II (Functional Language Articu- 
lated Interactive Resource) [Wong and 
Reid 19821 developed at TRW by Peter 
Wong, Eric Reid, Phil Schmidt, and 
Christopher Barbay, is an interface rapid 
prototyping system capable of prototype 
generation and interpretive or compiled ex- 
ecution of the prototype. This color graph- 
ics based tool is intended for development 
of interactive systems for either menu- 
based or keyword-based interactive sys- 
tems. Prototype developers can use 
FLAIR’s show-by-example menu method 
to produce dialogues for single or multi- 
screen graphics systems. FLAIR can handle 
a variety of input devices, from keyboards 
to voice recognition devices. Menu selec- 
tions allow an extensive library of FLAIR 
development tools (called microprimitives), 
such as maps, symbols, constructors, and 
other graphics entities, to be accessed at 

the touch of a button. The Shell, an inter- 
face developed specifically for FLAIR, can 
dynamically link the prototype’s execution 
to the end-user application routines. Any 
VAX text editor can easily modify the com- 
mand files generated by FLAIR to change 
the behavior, graphics, and application 
linkages. 

The FLAIR interface is considered to be 
a Dialogue Definition Language (DDL), a 
menu-driven system that directs a dialogue 
developer through a coherent and orderly 
translation of the prototype into a form 
that is executable as an end-user system. 
FLAIR deciphers and codes initial proto- 
cols of the input/output devices as a single 
standard set of protocols for the prototype 
being developed. FLAIR has static frames, 
scenario dialogues, and dynamic system 
scenarios to support system development. 
Static frames allow construction, storage, 
and retrieval of a picture. Scenario dia- 
logues display a sequence of frames, control 
the sequence of frames logically as a result 
of interactive end-user inputs, and audit 
and time-stamp end-user prototype inter- 
action for later analysis. Dynamic system 
scenarios simulate multiple work station 
communications and environmental con- 
ditions in order to measure an end-user’s 
responses. 

FLAIR can be used in most interactive 
computing situations. The system has 
been used in prototyping computer-aided 
instruction (CAI) systems; command, 
control, communication, and intelligence 
(C31) systems; computer-aided engineering 
(CAE) systems; cartographic systems; and 
as a front-end driver for decision support 
for various prototype systems. Use of 
FLAIR has resulted in approximately a 
two-to-one reduction in time required for 
building graphical interactive displays. 

2. Interface Management Concepts 

a. Dialogue independence: Dialogue is sep- 
arated from computation. FLAIR can 
calculate dynamic values; end-users can 
attach their own programs to FLAIR 
during run time for additional compu- 
tational requirements. 

b. Structural model of interface: None. 
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C. 

d. 

e. 

f. 

iit. 

h. 

3. 

a. 

b. 

C. 

d. 

e. 

Representation of interface: Dialogue 
representation is done either of two 
ways: show by example or keyword en- 
tries. In show by example, the developer 
draws an example of what some portion 
of the interface is to look like. For key- 
word entries, the developer defines a 
typed command string; keywords of 
functions represent what the function is 
to do. 
Interface development tools: Initial rep- 
resentation is done by pointing or key- 
word. Subsequent dialogue editing is 
done through a text editor. By using a 
pointing device one can show FLAIR 
how to proceed in a dialogue. 
Dialogue developer role: Not explicitly; 
system designer provides the overall 
scheme. 
System development methodology: Not 
bound to a specific methodology. 
Rapid prototyping: FLAIR is primarily a 
rapid prototyper. 
Control structure: Primarily dialogue 
dominant; control structures can be 
built into any graphics (dialogue) enti- 
ties. 

Features of System 

Internal representation of interface defi- 
nitions 
l At implementation time: Semistate 

table, textual code. 
l At prototyping time: Semistate table, 

textual code. 
l At run time: Compiled state table with 

binary code. 
Lexical constraints: System handles 
range, exception, and inclusion value 
checking if the developer wants to put 
these constraints in the system. String 
checking can be done for string size and 
string match. 
Input dialogue: Input device dependent 
modules accept and translate end-user 
input device signals. 
Output dialogue: Subroutine calls to 
FLAIR can be used by the system de- 
signer in the output dialogue. 
Relationship between input and output 
dialogue: No distinction made. 

f. 

g- 

h. 

1. 

4. 

it: 

C. 

d. 

5. 

a. 
b. 

Lt. 
e. 
f. 

Help: No specific tools. 
Pragmatics: Handles graphics tablets, 
light pen, joystick, mouse, touch panel, 
trackballs, function keys, voice recogni- 
tion, and (in the future) complete vision. 
Multiple input devices: No, single device 
at a time. 
Support environment and graphics: 
Runs under VMS 4.1 using Core graph- 
ics. FLAIR is based on graphical as well 
as keyword dialogue; both can interface 
to control structures. 

Miscellaneous Questions 

Human factors built in: No. 
Sequential versus asynchronous dia- 
logue: Generally produces sequential 
dialogues; however, an environmental 
generator can perform concurrent pro- 
cessing for some asynchronous dia- 
logues. 
Generality of interaction style: Menus, 
graphical input, keyword/sentences, 
voice recognition, and form prompting 
are supported. 
Interface evaluation: Not directly; how- 
ever, an audit trail can be generated for 
dialogue error evaluation. 

Implementation 

Languages: FORTRAN, Assembler. 
Operation system: VMS 4.1. 
Date work begun: February 1981. 
Status: Internal product. 
Personnel: Four computer scientists. 
Self-creating: Probably. 

George Washington University UIMS 
(GWUIMS) 

1. General Description of System 

This research represents an attempt to de- 
velop a general architecture for user inter- 
face management system development that 
is in some ways analogous to an expert 
systems shell for expert systems develop- 
ment. This UIMS was developed by John 
Sibert, Dave Hurley, and Teresa Bleser at 
the George Washington University. Based 
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on an object-oriented programming para- - - h. Control structure: Dialogue dominant 
digm, it is a departure from traditional 
UIMS development [Sibert et al. 19881. 
The GWUIMS is related to earlier work at 
GWU by its incorporation of Foley’s three 
levels of an interaction language: lexical, 3. 
syntactic, and semantic levels. These three 
levels are incorporated by embodying the a. 
boundaries between levels within object 
classes. This was determined by the obser- 
vation that many of the hardest end-user 
interface design problems seem to involve 
the boundaries between Foley’s levels and 
by the desire to provide for intelligence at 
those boundaries. 

control is resident in the support envi- 
ronment. 

Features of System 

Internal representation of interface defi- 
nitions 

At implementation time: Executable 
LISP code with some tables and com- 
piled C code. 
At prototyping time: Executable LISP 
code with some tables and compiled C 
code. 

Interactive interfaces are represented by 
direct manipulation customizing of inter- 
face objects “cloned” from an object tem- 
plate library. The motivation is to provide b. 
interactive rapid prototyping for a variety 
of dialogue styles. This is a research- 
oriented system, currently supporting only 
a few interaction techniques and minimal 
design tools. 

C. 

2. 

a. 

b. 

C. 

d. 

e. 

Interface Management Concepts 

Dialogue independence: Computation is 
carried out by “application objects” that 
communicate with dialogue objects by d. 
message passing. 
Structural model of interface: Layered, 
based on semantic, syntactic, and lexical e. 
language levels. 
Representation of interface: Abstract ob- 
jects; language representation is inter- 
active customizing of “template” objects 
such as menus. f. 

Interface development tools: Direct ma- 
nipulation tools, often using menus. 65 
Dialogue developer role: Builds and tests h. 
individual manipulation techniques as 
well as dialogues; essentially a combi- 
nation of authoring and graphic design. 
System development methodology: No 
specific methodology but uses a combi- 
nation of top-down design with iterative 
enhancement and refinement. 1. 

Rapid prototyping: Rapid prototyping 
uses a set of generic application objects 
that simulate a variety of behaviors us- 
ing probabilistic simulations. 

At run time: Compiled LISP and ta- 
bles and compiled C code. 

Lexical constraints: Lexical constraints 
handled with arbitrary interaction tech- 
niques written in C code and interfaced 
to the LISP environment. 

Input dialogue: Some end-user errors are 
trapped by dialogue (e.g., clicking mouse 
when there is no target). Semantic er- 
rors are detected generally by applica- 
tion objects that report success or failure 
back to the appropriate dialogue object. 
Output dialogue: All messages and 
prompts are defined as representation 
objects, which are output. 
Relationship between input and output 
dialogue: Input dialogue is handled by a 
set of “interaction objects,” and output 
dialogue is handled by a set of “repre- 
sentation objects.” 
Help: Developed in the same way as any 
message. 
Pragmatics: Currently being researched. 
Multiple input devices: Yes; uses a “lis- 
tener object” similar to that found in 
most window systems. Uses a table- 
driven parser to determine an appropri- 
ate action in response to events from 
devices; any movement of an active de- 
vice is an event. 
Support environment and graphics: 
Runs under UNIX and is programmed 
in Franz LISP and Flavors. Graphics is 
all pervasive as icons, process indica- 
tors, and interaction techniques. 
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4. 

a. 

b. 

C. 

d. 

5. 

;: 

:. 

e. 

f . 

Miscellaneous Questions 

Human factors built in: No; system is 
intended to provide for inclusion of hu- 
man factors. 
Sequential versus asynchronous dia- 
logue: Can produce more than just se- 
quential dialogues, although limited by 
operating system considerations in ac- 
tual performance. 
Generality of interaction style: General; 
new interaction techniques can be 
added. 
Interface evaluation: Not specifically ad- 
dressed at this time. 

Implementation 

Languages: LISP (Franz, Flavors). 
Operating systems: UNIX. 
Date work begun: March 1985. 
Status: Experimental. 
Personnel: Three computer scientists, 
one artist. 
Self-creating: Yes. 

Open Dialogue 

1. General Description of System 

Open Dialogue is a follow-on product to 
Domain/Dialogue, an Apollo product first 
released in 1985 [Schulert et al. 19851. 
Like Domain/Dialogue, Open Dialogue al- 
lows a dialogue developer to use a declara- 
tive definition language to describe the 
human-computer interface to an applica- 
tion separately from the application itself. 
This interface definition can be bound with 
the application or saved in a file and loaded 
at run time. The application can be written 
in most conventional programming lan- 
guages, including C, FORTRAN, and 
Pascal. 

Open Dialogue differs from Domain/Dia- 
logue in many ways. The most significant 
difference, from a practical point of view, 
is that it is designed to run on machines 
other than Apollo workstations. It is cur- 
rently layered on UNIX and the X Window 

System, but could, in theory, be moved to 
other platforms. 

Like Domain/Dialogue, Open Dialogue 
has an object-oriented design. An interface 
is constructed out of “objects,” such as 
menus and pop-ups. Each object has a 
“class,” or type, that defines its behavior. 
An interface is defined by specifying a set 
of objects and their interrelationships. 
Open Dialogue is extensible through addi- 
tion of new classes by application devel- 
opers. Internal interfaces and abstract 
classes are made available to developers, 
allowing them to implement additional 
classes in C++, the system implementation 
language. These classes are fully integrated 
with the rest of the system, including all 
interface definition tools. 

Domain/Dialogue requires that an inter- 
face be defined separately from an appli- 
cation before it is run. Open Dialogue 
supports this model but also allows addi- 
tional interface components, or even the 
entire interface, to be defined at run time. 
Furthermore, since the object definition fa- 
cilities are accessible to applications, devel- 
opers can write then own interface 
definition tools. 

Open Dialogue does not impose a specific 
style on interfaces developed with it. It 
does, however, allow consistent interfaces 
to be encouraged through definition of 
“templates.” A template describes a portion 
of an interface, a grouping of one of more 
objects along with attributes describing 
their appearance and behavior. A template 
can be instantiated any number of times. 
Each instantiation can be customized 
by further specifying or overriding object 
attributes. 

External or dialogue dominant control of 
an application is encouraged. Open Dia- 
logue allows the application to be written 
as a subroutine library. It will acquire in- 
formation for all input parameters from the 
end-user based on the interface definition. 
It will take results of the function call and 
present them to the end-user, also based on 
the interface definition. The application 
can, however, treat Open Dialogue as a 
subroutine package itself, making calls to 
inquire and set values and to request a 
stream of input events. 
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2. 

a. 

b. 

C. 

d. 

e. 
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Interface Management Concepts 

Dialogue independence: A dialogue de- 
veloper creates the interface in a dia- 
logue definition source file, which is 
compiled separately from the applica- 
tion. 

Structural model of interface: Human- 
computer interaction is modeled by 
three general pieces: application objects, 
graphic objects, and data transformer 
objects (some of which simply contain 
data). Application objects provide a 
means for application callbacks and re- 
turns. Graphic objects provide end-user 
interaction and layout pieces of the in- 
terface. Data transformer objects trans- 
form data from one type to another (e.g., 
string to integer) and hold data. 

Representation of interface: A textual 
dialogue definition language is compiled 
to create an interface definition. Work 
is under way on an interactive design 
tool that will initially allow all graphical 
aspects of the interface to be described; 
ultimately, it will allow all aspects of the 
human-computer interface to be de- 
scribed. The system allows developers 
to define their own interface definition 
tools. 
Interface development tools: The dia- 
logue is specified in a text file with a 
text editor. An interactive design tool is 
currently being developed for graphical 
creation and manipulation of the inter- 
face. 
Dialogue developer role: The dialogue de- 
veloper builds an interface using the 
Open Dialogue interactive tools. This 
developer must work in concert with the 
application developer to agree on the 
internal dialogue. Additionally, if new 
interface components are needed, the 
dialogue developer can create these 
primitives (objects). 

System development methodology: NO 
specific system development methodol- 
ogy is used, but use of Open Dialogue 
facilitates iterative design and rapid 
prototyping. 
Rapid prototyping: Rapid prototyping is 
an explicit step in the use of Open Dia- 

h. 

3. 

a. 

b. 

C. 

logue. A stub application is provided 
with which an interface can be viewed 
without writing any application code. 
All dialogue described entirely within 
the interface definition can be initiated 
and tested. Any interaction that triggers 
application intervention either through 
a callback or return will note that such 
an event was triggered. 
Control structure: The encouraged 
control structure is external or dialogue 
dominant. Internal or computation 
dominant control is also supported, 
however. 

Features of System 

Internal representation of interface defi- 
nitions 

l At implementation time: Object work- 
space (a collection of interaction ob- 
jects that can be stored in a file or 
loaded into memory). 

l Atprototyping time: Object workspace. 
l At run time: Object workspace. 

Lexical constraints: The nature of the 
current interaction primitives supplied 
with Open Dialogue is such that there 
are few lexical constraints that can be 
violated by the end-user. For example, 
character input can be validated either 
a character at a time, when the end-user 
finishes the input, or at some later time, 
depending on the interface definition. 
Some validation, such as that for nu- 
meric input, can be performed by the 
primitives (objects) provided with the 
system. Other validation can be done by 
the application or through primitives 
added to the system by the application 
developer. 
Input dialogue: All inputs are validated 
for lexical accuracy by the dialogue. Val- 
idation can be done by the transformer 
objects provided with Open Dialogue, by 
the application, or by a new transformer 
created as an extension to Open Dia- 
logue. Transformers take one type of 
data, such as string, as input and provide 
a different type of data, such as integer, 
as output. 
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d. 

e. 

f. 

g- 

h. 

i. 

4. 

a. 

Output dialogue: All output is described 
as objects, with the exception of output 
to graphics areas. Objects are dynamic 
in that anything that can be set up in 
advanced through a dialogue description 
file can also be done at run time. 
Relationship between input and output 
dialogue: Most objects can both contain 
or display output as well as receive input 
data, although objects are primarily ori- 
ented one way or the other. Error mes- 
sages, help, and prompts are all 
instances of standard interaction prim- 
itives. 
Help: Help text can be associated with 
any object in the interface. A standard 
end-user action is defined for accessing 
help for individual pieces of the inter- 
face. Help text is displayed within a pop 
UP* 
Pragmatics: Currently pragmatic3 are 
encapsulated within the X Window 
System. 
Multiple input devices: The current im- 
plementation waits concurrently on 
keyboard and mouse input; additional 
input devices can be used as supported 
by X. Support is planned to allow input 
from any number of input sources. This 
input would be processed in round robin, 
run-to-completion fashion. 
Support environment and graphics: 
Open Dialogue is currently layered on 
UNIX and Version 11 of the X Window 
System. Open Dialogue has been ported 
to Apollo workstations, SUN worksta- 
tions, and Micro VAX workstations. Fu- 
ture ports include IBM RT personal 
computers. Open Dialogue is developed 
to run on bit-mapped workstations run- 
ning X. making extensive use of graph- 
ics both for displaying the interface and 
the application output. Icons, menus, 
and other display and interaction tech- 
niques are all graphically oriented. 

Miscellaneous Questions 

Human factors built in: No human fac- 
tors principles are enforced by Open 
Dialogue. Human factors principles can, 
however, be enforced among applica- 

b. 

C. 

d. 

5. 

;: 

C. 

d. 
e. 
f. 

tions by use of templates in creating the 
dialogue. A number of interfaces can use 
the same set of templates to create a 
consistent look and feel across those 
interfaces. 
Sequential versus asynchronous dia- 
logue: In general the application invokes 
an Open Dialogue routine to wait for 
input. End-user interaction proceeds in 
the interface until either a return to the 
application is requested by the dialogue 
or an application callback routine is 
triggered. After a return is triggered 
and the application has completed any 
processing, the application can return 
control to Open Dialogue by invoking 
the event wait routine. At the comple- 
tion of a callback routine, control is 
returned to Open Dialogue as well. Open 
Dialogue cannot produce dialogue that 
is other than sequential at this time. 
Future work is planned to address this 
limitation. 
Generality of interaction style: Inter- 
action techniques provided with Open 
Dialogue support menu and forms- 
oriented interfaces. Extensions, how- 
ever, could be implemented to handle 
any desired interaction style. These in- 
teraction styles could be mixed and 
matched as desired. 
Interface evaluation: No mechanisms 
are built into Open Dialogue for dialogue 
evaluation. The fact that an interface 
can be brought up and used with no 
application code, however, encourages 
rapid prototyping and early evaluation 
of proposed interfaces. 

Implementation 

Languages: C++. 
Operating system: UNIX bsd4.2. 
Date work begun: 1986, with much of the 
design work leveraged from Domain/ 
Dialogue started in 1984. 
Status: Commercial product. 
Personnel: Five computer engineers. 
Self-creating: Theoretically, the Inter- 
active Design Tool could be used to cre- 
ate itself; however, work has not 
progressed to that stage yet. 
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RAPID/USE 

1. General Description of System 

RAPID/USE [Wasserman 1985; Wasser- 
man and Shewmake 19851, developed at the 
University of California at San Francisco 
by Anthony I. Wasserman and David 
Shewmake, is designed to provide auto- 
mated support for the User Software En- 
gineering (USE) methodology. The USE 
methodology advocates independent design 
of the end-user interface(s) to an interac- 
tive system, along with end-user partici- 
pation in early stages of the develop- 
ment process, largely through the ability 
to use and evaluate prototypes of the 
end-user interface to the developing 
system. RAPID/USE executes a transition- 
diagram-based representation of an 
interactive system. In the transition dia- 
grams, nodes represent messages to be dis- 
played; arcs represent transitions, which 
may be caused by end-user input or other 
events; and small boxes represent actions 
associated with the application. The exe- 
cutable formalism of the state transition 
diagrams is a very powerful way to repre- 
sent and execute interactive systems. 

With no actions implemented or linked, 
RAPID/USE can be used simply to “exe- 
cute” the transition diagrams and to pro- 
vide an executable prototype of the 
end-user interface. Actions may be linked 
into the system incrementally, thereby 
making it possible to evolve the resulting 
program from a mockup of the interface to 
a complete system. Actions may be written 
in commonly used programming languages 
(C, Pascal, FORTRAN 77), or in the data 
manipulation language for the Troll/USE 
relational database management system. 

The front-end to RAPID/USE is a 
graphical editor (Transition Diagram Edi- 
tor) that generates RAPID/USE code. 
When using the TDE, the developer is 
given the impression of a two-dimensional 
programming language. During execution 
of the RAPID/USE program, it is possible 
to animate the transition diagrams as a way 
to trace execution. RAPID/USE also con- 
tains logging mechanisms that can be used 
to replay or evaluate a session. 

RAPID/USE makes no assumptions 
about interface style and simply gives the 

ACM Computing Surveys, Vol. 21, No. 1, March 1989 

dialogue developer access to low-level con- 
trol over the alphanumeric display. Higher 
level programs, such as a direct manipula- 
tion forms editor, are then built on top of 
RAPID/USE; that is, they generate a 
RAPID/USE program. A product based on 
RAPID/USE is now commercially avail- 
able from Interactive Development Envi- 
ronments, Inc. 

2. 

a. 

b. 
C. 

d. 

e. 

f. 

g. 

h. 

3. 

a. 

Interface Management Concepts 

Dialogue independence: Done through 
the use of a separate dialogue descrip- 
tion file. 
Structural model of interface: None. 
Representation of interface: State tran- 
sition diagram network is used, with 
variables and control mechanisms added 
to the basic transition network idea to 
extend it to describe human-computer 
interaction. 
Interface development tools: These in- 
clude a graphical Transition Diagram 
Editor (TDE), text editor for end-users 
without TDE, and form layout program 
for the specific case of database entry 
and retrieval. 
Dialogue developer role: Not explicitly 
included, but RAPID/USE could be 
used with a method that supports a dia- 
logue developer. 
System development methodology: Ex- 
plicitly supports the User Software 
Engineering (USE) methodology as an 
approach to system development. 
Rapid prototyping: Dialogue represen- 
tation, with transition diagrams or the 
RAPID/USE language, is directly exe- 
cutable. Prototyping is explicitly a step 
in the User Software Engineering meth- 
odology. 
Control structure: Transition diagrams 
provide the control structure, which is 
inherently dialogue dominant. 

Features of System 

Internal representation of interface defi- 
nitions 
l At implementation time: Tables. 
l At prototyping time: Tables. 
l At run time: Tables. 
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b. 

C. 

a. 

e. 

f . 

g- 

h. 

i. 

4. 

a. 
b. 

c. 

Lexical constraints: Character or token 
handling is equally available. 
Input dialogue: Dialogue representation 
allows checking of “types,” such as nu- 
merical or character, plus range and 
length limits; other checks may be made 
through programmed actions. 
Output dialogue: Dialogue representa- 
tion includes variables, which may be 
passed to programmed actions; values 
may be communicated in both directions 
at run time. 
Relationship between input and output 
dialogue: Output is associated with 
nodes and input is associated with tran- 
sitions on arcs between nodes. Error 
messages, prompts, and help informa- 
tion are always treated as output where 
the preceding input has caused a tran- 
sition to such a state (node). 
Help: All dialogue is handled consist- 
ently; no special facilities are provided 
in the tool for help. 
Pragmatics: Currently works only with 
a keyboard with possible time-outs. Cur- 
rent research focuses on handling direct 
manipulation. 
Multiple input devices: Current research 
is modeling “loosely connected” dia- 
logue processes represented as a set of 
transition diagrams. 
Support environment and graphics: 
UNIX and SUN workstation or similar 
workstation (eventually). Graphics may 
be achieved through use of programmed 
actions that involve graphical routines 
but is not the focus of the current sys- 
tem. Current research is addressing 
highly interactive systems that include 
multiple windows and graphics. 

Miscellaneous Questions 

Human factors built in: No. 
Sequential versus asynchronous dia- 
logue: Sequential dialogue is possible; 
also an action can invoke a background 
process that can produce output, allow- 
ing some asynchronous interfaces. 
Generality of interaction style: General 
alphanumeric display. 

d. 

e. 
f. 

Interface evaluation: Logging in two 
forms: a raw keystroke file, and a tran- 
sition log, with transition, input, output, 
action (if any), and time stamp for each 
state transition. An auxiliary tool, rap- 
sum, summarizes the transition log. 
This tool provides information that can 
be used to evaluate interfaces built with 
the tool. 

Implementation 

Languages: C. 
Operating system: UNIX. 
Date work begun: 1979. 
Status: Research and, recently, commer- 
cial product. 
Personnel: Three computer scientists. 
Self-creating: No. 

Rapid Intelligent Prototyping Laboratory 
(RIPL) 

1. General Description of System 

The Rapid Intelligent Prototyping Labo- 
ratory (RIPL) [Flanagan et al. 19851, 
developed at Computer Technology ASSO- 
ciates in Englewood, Colorado, is a hard- 
ware and software suite that supports 

prototypes that are realistic facades of com- 
plex computer systems. In an RIPL proto- 
type, the external aspects of the interface 
appear realistically, but internal workings 
are an entirely different matter. The pro- 
totpye interface software is more complex 
than the eventual “real” system. This is 
necessary to allow measurement and eval- 
uation of the interface. RIPL is an evolving 
product that eventually will support the 
entire system interface development life 
cycle. The life cycle as viewed by RIPL 
covers requirement definition, prototype 
generation, and building interfaces with 
standardized end-user interaction. 

The initial RIPL does not include direct 
connection to a requirements definition ca- 
pability or provide an ability to generate 
code; it supports the end-user application 
software development by providing screen 
and dialogue definitions in a structured 
form. RIPL initial interface design exper- 
tise is acquired from the guidelines com- 
piled by Smith and Mosier [1986] and is 
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limited to the areas of display format, dia- 
logue type selection, and physical input de- 
vice selection. 

RIPL has five major components. The 
“Executive” software set up all necessary 
file and library access and performs house- 
keeping functions of deleting, renaming, 
and backing up data. The “Prototype Build 
Subsystem” allows a dialogue developer to 
define and arrange end-user activity screen 
areas-referred to in RIPL as “tiles’‘-and 
to define everything necessary for prototyp- 
ing. The “Simulation Subsystem” links def- 
initions with end-user routines and 
libraries and then performs interface sim- 
ulations. The “User Advisory Subsystem” 
consists of two expert systems, both oper- 
ating from a consolidated knowledge base. 
The “Consultation Expert” provides gen- 
eral advice and guidance to the dialogue 
developer. The “Evaluation Expert” calcu- 
lates design metrics and evaluates the pro- 
totype. The “Technical Librarian” software 
implements an electronic book metaphor 
for design guidelines and manuals. The ini- 
tial RIPL is a single end-user workstation 
built on the Digital Equipment Corporation 
VAXstation. 

2. Interface Management Concepts 

a. Dialogue independence: Computation is 
treated as a response to dialogue stimuli. 

b. Structural model of interface: Stimulus- 
response network. Stimuli are specified 
as Boolean combinations of end-user in- 
puts (strings and picks) and system 
events (timers and tiles becoming active 
or inactive). Responses are changes to 
the tile set. 

c. Representation of interface: Represen- 
tation is interactive; a stimulus-response 
network is built with a direct manipu- 
lation interface. A developer can specify 
the tile interactions in a breadth or 
depth first manner. A “TBD” (To Be 
Defined) capability provides stubs for 
yet unspecified responses. The devel- 
oper designates a stimulus by either 
doing it or describing it. 

d. Interface development tools: Direct ma- 
nipulation tools; manipulations are 
made to the real interface, not a descrip- 
tion of the interface. 

e. Dialogue developer role: Yes; it uses the 
direct manipulation interface and inter- 
acts with consultation and evaluation 
expert systems to analyze and redefine 
the dialogue. 

f. System development methodology: At 
this point none is favored; the intention 
is for RIPL to support traditional de- 
velopment methodologies, not replace 
them. In the near future RIPL will be 
integrated with a Task Description Lan- 
guage (TDL) tool developed in-house. 
TDL is a formal grammar akin to PDL 
for software. TDL specifies system end- 
user tasks in a system, independent of 
whether or not the task is automated. 

g. Rapid prototyping: Primarily a rapid 
prototyping system; future extensions 
will allow closer integration with system 
development methodologies and produc- 
tion of structures or code. 

h. Control structure: Control structure is 
event based. Stimuli can be either dia- 
logue oriented (e.g., end-user action) or 
system oriented (fixed duration timers 
or asynchronous zero duration timers 
started by application software). 

3. Features of System 

a. Internal representation of interface defi- 
nitions 
l At implementation time: Tables and 

end-user-defined code modules. 
l At prototyping time: Tables and end- 

user-defined code modules. 
l At run time: “To Be Defined” (see 2c 

above). 
b. Lexical constraints: Keystrokes, strings, 

and pick locations are captured as stim- 
uli and compared against internal tables 
to see which tiles are “interested.” Lim- 
ited ability to define such stimuli as any 
keystroke, a specific key, or any numeric 
keystroke is provided. There are no 
errors, as such, only stimuli that are 
not of interest to the prototype. These 
unused stimuli are captured for later 
analysis. 

c. Input dialogue: Focus is on interaction 
mechanisms, and is less concerned in 
the initial version with the validity of 
inputs. Errors and error handling are 
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d. 

e. 

f. 

g* 

h. 

i. 

defined as stimuli and responses by the 
developer. Error-handling features such 
as ranges of valid input or list validation 
are not currently provided. 
Output dialogue: Output displays are de- 
fined either a priori or generated by 
designer code within RIPL guidelines. A 
priori definitions provide templates with 
optional list items to use in the template 
positions or provide multiple instances 
of the same type tile. 
Relationship between input and output 
dialogue: End-user inputs are stimuli; 
changes to tile attributes and contents 
are responses. Error messages or help 
output are irrelevant to the dialogue def- 
inition process; they are used to associ- 
ate semantic meaning with tile areas for 
dialogue evaluation. 
Help: Not a special case; basic tools 
are appropriate for developing help 
dialogues. 
Pragmatics: An environment definition 
is used to represent details of target 
devices the prototype will run on. The 
evaluation expert takes this information 
into account, if specified. Dialogue itself 
is based on logical devices. 
Multiple input devices: Supports multi- 
ple input devices and multiple display 
surfaces, and the environment can be 
orchestrated as one integrated proto- 
type. 
Support environment and graphics: Dig- 
ital Equipment Corporation MicroVMS 
operating system; written in VAX Pas- 
cal using GKS for display output., Ex- 
pert systems are implemented in MIT’s 
NIL Common LISP. Handles icon- 
oriented direct manipulation as well as 
menus and queries. 

C. 

d. 

5. 

a. 

b. 

:. 

e. 

4. Miscellaneous Questions f. 

a. Human factors built in: It currently ad- 
vises, using the consultation or the eval- 

input-process-output is the approach. 
Three different processors make this 
possible: RIPL getting stimuli from an 
end-user; RIPL modifying tiles as a re- 
sponse; and an end-user-written routine 
either doing application processing or 
generating its own displays. 
Generality of interaction style: Dialogues 
for direct manipulation, menus, queries, 
and form-driven interfaces can be cre- 
ated. Currently there is no hardware 
support for voice input/output, but it is 
theoretically possible. 
Interface evaluation: Handled by three 
mechanisms: 

Evaluation Expert System-Design 
metrics calculated from tile attributes 
and stimulus-response definitions. 
Instruments-Start and stop timers 
between stimuli and responses and 
cursor trackers to monitor cursor 
movements. 
Capture/Playback-Postsimulation 
evaluation done by replaying simula- 
tion from a capture file at different 
playback speeds. 

Implementation 

Language: VAX Pascal and MIT’s NIL 
Command LISP. 
Operating system: DEC MicroVMS with 
VAXstation user interface system. 
Date work begun: October 1984. 
Status: Internal currently; commercial 
in the future. 
Personnel: Two computer scientists/ 
software engineers; two programmers; 
one graphics specialist; one expert sys- 
tems specialist; two human factors 
experts. 
Self-creating: Yes; RIPL can prototype 
itself. 

uation expert; it will eventually enforce SmethersBarnes Prototyper 
environment specifications such as spe- 
cific dialogue usages, error handling, and 1. General Description of System 

shape encoding. Prototyper, developed and marketed by 
b. Sequential versus asynchronous dia- SmethersBarnes in Portland, Oregon, is a 

logue: There is no requirement that dia- tool for rapid design, prototyping, and test- 
logue be strictly sequential; concurrent ing of interfaces specifically for Macintosh 
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applications [Prototyper 19871. Code gen- 
eration adds the capability to create high- 
level (Pascal) code and Macintosh resource 
data structures, allowing stand-alone exe- 
cution of interface prototypes. Since gen- 
erated stand-alone prototypes contain a 
skeletal event-oriented program structure, 
they can be easily augmented to support 
additional human factors testing of logic or 
even to form the base of a final application. 

Through Prototyper’s dynamic creation 
of Macintosh data structures and its use of 
the Macintosh Toolbox, applications pro- 
duced using Prototyper are highly com- 
pliant with accepted Macintosh interface 
standards. Prototyper’s operational meta- 
phors exploit widely used object-oriented 
drawing concepts; combined with a strong 
focus on graphic representation, this en- 
ables Prototyper to be accessible to profes- 
sional software engineers and end-users 
alike. 

The intention with Prototyper is to ease 
the task of learning the intricacies of ap- 
plication development on the Macintosh, 
to provide a tool that complements the 
developer’s existing tools and skills, and to 
provide a smooth, intuitive tool for com- 
munication among all involved persons, 
whatever their contribution to the software 
development process. 

Prototyper focuses on menus and win- 
dows, with a menu editor and a window 
editor that include a palette of standard 
interface objects. Immediate simulation of 
the menu or window currently being con- 
structed is always available, as is a global 
simulation of the entire interface. Proto- 
typer capitalizes on the reusability of Ma- 
cintosh resource objects and can import 
such objects from other applications, saving 
redundant work. Design may proceed with- 
out regard to computational complexities, 
allowing nonprogrammers to express their 
ideas without technical expertise. Gener- 
ated code is highly commented and logically 
structured, lending itself to extension. 

2. Interface Management Concepts 

a. Dialogue independence: Yes. The major- 
ity of interface objects are implemented 
as Macintosh resources, yielding in- 
strinsic separation. Pascal units created 
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for each window/dialogue/alert will call 
computational logic as necessary and 
are therefore easily isolated. 

b. Structural model of interface: None. 
C. Representation of interface: Graphical, 

object-oriented, direct manipulation 
language produced using interactive 
tools. 

d. Interface development tools: Menu editor 
with concurrent simulator, window/dia- 
logue/alert worksheets with palette of 
tools represented iconically. The dia- 
logue developer creates interface objects 
by selecting a tool, clicking and dragging 
with mouse. A rapid context switching 
facility allows simulation of current 
window. 

e. Dialogue developer role: Role is sup- 
ported by direct manipulation tools; also 
the roles of software engineer, graphic 
designer, human factors specialist, test 
subject, evaluator, analyst, managerial 
staff, end-user, and student are sup- 
ported. 

f. System development methodology: No 
specific methodology, but Prototyper as- 
sists specification, design, implementa- 
tion, testing, and maintenance phases of 
software life cycle. 

g* Rapid prototyping: The strong suit of 
Prototyper, specific to the Macintosh 
environment. No technical knowledge is 
necessary to construct prototypes; par- 
ticipation can be solicited from ail proj- 
, ect members and clients. 

h. Control structure: The event-driven ar- 
chitecture of Macintosh applications is 
followed. Menu initialization and hand- 
ling of run-time inputs are isolated. Pas- 
cal code is generated from the interface 
design. 

3. Features of System 

a. Internal representation of interface defi- 
nitions 
l At implementation time: Internal state 

tables and Macintosh resources. 
l At prototyping time: Internal state ta- 

bles and Macintosh resources. 
l At run time: Executable code and 

Macintosh resource objects. 
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Lexical constraints: Macintosh buttons, 
icons, pictures, check boxes, radio but- 
tons, and static and editable text objects 
are supported; external logical behavior 
must be code in computational routines. 
Generated code handles graphical and 
linking support of interface only. 
Input dialogue: Input validation is per- 
formed by computational components of 
the prototype generated using Proto- 
typer. 
Output dialogue: Presentation of output 
within application windows is the re- 
sponsibility of the application program- 
mer. Strong Macintosh conventions 
govern presentation and end-user inter- 
action with output. Prototyper supports 
alerts, used for outputting error mes- 
sages and end-user warnings, and win- 
dow scroll bars allow end-user control 
of displayed text. 
Relationship between input and output 
dialogue: No distinction is made in win- 
dows, modal dialogues, or modeless dia- 
logues. Alerts are generally output 
features. 
Help: Yes, there are tools that aid in 
design and implementation of on-line 
help for the end-user. 
Pragmatics: Prototyper assumes bit- 
mapped terminal, mouse, and custom- 
izable interface characteristics of the 
Macintosh environment. 
Multiple input devices: Event-driven 
Macintosh architecture handles inputs 
from serial ports, data storage devices, 
keyboard, mouse, and so on. 
Support environment and graphics: Cur- 
rently limited to Macintosh operating 
system, with plans to expand to other 
graphical microcomputer environments. 
Graphics are central to the Macintosh 
environment, and Prototyper develops 
standard Macintosh interfaces. 

Miscellaneous Questions 

Human factors built in: Prototyper pro- 
duces interfaces that embody those 
principles intrinsically in Macintosh ar- 
chitecture, specifically found in Apple 
Computer Inc.‘s “Human Interface 

b. 

C. 

d. 

5. 

it: 

k 

e. 

f. 

Guidelines.” It stresses, for example, 
nonmodality, avoidance of sequential- 
ity, and pull-down menus. 
Sequential versus asynchronous dia- 
logue: Asynchronous dialogue such as 
that found in Macintosh application in- 
terfaces is supported. 
Generality of interaction style: Proto- 
typer produces interfaces that are ori- 
ented to Macintosh-specific interaction 
styles and conventions. 
Interface evaluation: No. 

Implementation 

Languages: Pascal. 
Operations system: Macintosh. 
Date work begun: 1986. 
Status: Commercial product. 
Personnel: Three computer scientists. 
Self-creating: Yes, new versions are 
being designed with the existing prod- 
uct. 

State Diagram Specification Interpreter 

1. General Description of System 

Research by Robert J. K. Jacob at the 
Naval Research Lab began as an attempt 
to develop and test a representation/speci- 
fication technique for describing inter- 
active end-user interfaces [Jacob 1983, 
19851. The technique is based on state tran- 
sition diagrams (STDs) with a set of special 
features and extensions-a set kept inten- 
tionally small in order to retain the prin- 
cipal benefit of state diagram notation, 
which is its conceptual simplicity. In the 
course of testing and refining the specifi- 
cation language, it was necessary to build 
an interpreter that implements the behav- 
ior given in a representation. Motivation 
for the interpreter was to test and improve 
the representation/specification language, 
not the other way around. 

State diagram specifications are executed 
by an interpreter to provide a working 
prototype of the specified system. The tech- 
nique supports a decomposition of the end- 
user interface description into semantic, 
syntactic, and lexical components. A spe- 
cific notation suitable for describing each 
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level to the interpreter in a separate 
document is then provided. A process of 
stepwise refinement of the syntactic rep- 
resentation from an informal representa- 
tion to a formal, executable one within the 
same notation is also supported. 

In addition to producing a token, a tran- 
sition in a state diagram may call a seman- 
tic action, a condition, or a nonterminal. A 
nonterminal is defined in a separate dia- 
gram, called a subroutine. Syntactic level 
diagrams also introduce output tokens to 
describe output syntax analogously to the 
description of input syntax in terms of in- 
put tokens. Since syntax is concerned with 
the names and sequences of input tokens, 
it is extended to include a description of 
the names and sequences of output tokens 
in the same state diagram notation. The 
concept of a token for output is, by analogy 
to input, a unit whose internal structure 
has no meaning with respect to this 
dialogue. 

The research has produced a technique 
for representing end-user interfaces based 
on state diagrams; a design notation that 
separates the end-user interface design and 
specification itself into the semantic, syn- 
tactic, and lexical levels; and an interpreter 
that accepts such a specification, imple- 
ments, and executes it. Several fairly large 
systems have been built using this method 
and interpreter. Current research focuses 
on extending the technique to describe 
direct manipulation or coroutine-based 
interfaces. 

2. 

a. 

b. 
C. 

d. 

Interface Management Concepts 

Dialogue independence: Separate repre- 
sentation or code for semantics and 
syntax. 
Structural model of interface: None. 
Representation of interface: State tran- 
sition diagrams. 
Interface development tools: A graphical 
STD editor allows “on the fly” changes 
to diagrams as they are executed. Pro- 
grams exist to draw STDs from text 
descriptions, pretty print text descrip- 
tions, and parse and translate (to LISP) 
the text form. 

e. 

f. 

h. 

3. 

a. 

b. 

C. 

d. 

Dialogue developer role: Writes the STD; 
does not write the semantic routines, 
which are given to a programmer. 
System development methodology: No 
specific software engineering methodol- 
ogy is used, but semantic/syntactic/lex- 
ical levels are separated throughout 
the design process, specification, and 
implementation. Stepwise refinement of 
representation/specification from early 
form to final form is supported, and 
early steps can be executed just as final 
steps. 
Rapid prototyping: A prototype runs di- 
rectly from the specification. Missing 
diagrams and actions can be stubbed 
automatically to obtain a prototype 
from an incomplete early version of the 
specification. 
Control structure: Dialogue dominant, 
calling semantic actions like subrou- 
tines. 

Features of System 

Internal representation of interface defi- 
nitions 
l At implementation time: (UNIX) text 

file describing STDs. 
l At prototyping time: (UNIX) text file 

describing STDs. 
l At run time: Internal tables contain- 

ing parsed version of text file data. 
Lexical constraints: Syntactic or lexical 
constraints are handled directly in the 
STD. Semantic constraints (e.g., name 
completion with respect to only those 
files that are readable by some end-user) 
are handled by calling a semantic action 
subroutine to check and return to a Boo- 
lean value, which is then used in tra- 
versing the STD. 
Input dialogue: Format and timing of 
input events are controlled by the STD; 
contents are stored for use by semantic 
actions. Some input validation is done 
in the STD and some in the semantic 
subroutines. 
Output dialogue: Output token contents 
are set by semantic actions, but format 
and timing of the token are controlled 
by the STD. 
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Relationship between input and output 
dialogue: All input or output consists of 
tokens. Input tokens and output tokens 
are treated as nearly symmetrically as 
possible; the two are distinguished by a 
naming convention in the specification. 
Help: Not specifically; a dialogue devel- 
oper can design help features as part of 
the STD, as has been done in all the 
systems built using this technique. 
Pragmatics: Hidden entirely from dia- 
logue representation, except at the 
lexical level, where they can be pro- 
grammed as needed. Currently there is 
no specific help for programming the 
lexical level. 
Multiple input devices: Yes, in principle. 
Transitions leading from a state may 
involve inputs from different streams, 
and whichever occurs first causes its 
transition. The current version of the 
lexical analyzer does not handle this; it 
can be changed. 
Support environment and graphics: 
UNIX, written in C. Also an experimen- 
tal version in Franz LISP on UNIX, and 
coming soon in Symbolics LISP on 
Symbolics. All dialogues, including 
graphical ones, are centered around se- 
quences of tokens. Tokens could, for 
example, put colored boxes in positions 
on a graphic display instead of text on 
the terminal. The technique has been 
used to produce a graphical interface. 

Miscellaneous Questions 

Human factors built in: No. 
Sequential versus asynchronous dia- 
logue: Current research is focused on 
extending the STD approach to cover 
concurrent, asynchronous dialogues 
more completely. 
Generality of interaction style: Based on 
sequences of input and output tokens; 
tokens internally can do anything. 
Interface evaluation: This is supported 
only to the extent that putting the end- 
user interface into STD notation clari- 
fies its behavior and helps one apply 
performance models. Any rapid proto- 
typing tool is useful for doing empiri- 

5. 

Fit: 

1. 
e. 
f. 

cal evaluations of end-user interface 
designs. 

Implementation 

Languages: C. 
Operating system: UNIX. 
Date work begun: 1981. 
Status: Experimental. 
Personnel: One computer scientist. 
Self-creating: Probably. 

Toolkit UIMS 

1. General Description of System 

The UIMS-formerly called TIGER-de- 
veloped at Boeing Computer Services 
[Kasik 19821 by David J. Kasik, Henry W. 
Ramsey, and J. Randy Houser is part of a 
larger toolkit for the development of highly 
interactive graphics-based applications 
[Kasik 19851. The toolkit is intended to 
isolate applications from operating sys- 
tems, computing hardware, graphics hard- 
ware, and database management systems. 

The toolkit UIMS strictly separates dia- 
logue components from the application by 
formatting all dialogue sequences for dis- 
play, managing all end-user defaults within 
and across sessions, accepting all end-user 
inputs, and handling operating system ex- 
ceptions. Its goal is to keep the interactive 
syntactic aspects of an application con- 
sistent for both end-users and application 
programmers and thus improve the produc- 
tivity of each. 

The toolkit UIMS incorporates extensive 
end-user productivity aids. Default track- 
ing is a compromise that combines ease-of- 
use characteristics of a menu-based system 
with the speed of parameter omission 
available in a command-based system. By 
preserving defaults for every dialogue se- 
quence, the end-user must only change a 
limited amount of information while still 
seeing all legal options. An end-user can 
invoke other functions (e.g., view manipu- 
lation) without losing information already 
entered in another function. Another mode 
allows free traversal (i.e., no explicit reject 
sequence is needed to quit) when the end- 
user wishes to quit in midfunction. Illogical 
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or illegal choices can be disabled automat- 
ically to help prevent the end-user from 
making errors. 

Physical interaction with the system is 
consistent across all applications and can 
present information in a number of ways. 
Two-dimensional windows present an over- 
lapped text window containing large 
amounts of alphanumeric information. 
Panels give a “graphical forms mode” nor- 
mally reserved for strictly alphanumeric 
terminals. A command macro language is 
provided for all applications to extend their 
functionality by combination. Pseudocon- 
struction allows an end-user to build data 
temporarily to aid in complex construction 
tasks. 

Programmer productivity aids are pro- 
vided for both the dialogue representation 
and run-time stages of application devel- 
opment. A programming language called 
ET (Extended TICCL) has been desgined 
as an extension of Pascal. ET contains new 
declaration and control structures that al- 
low a programmer to construct a seemingly 
linear dialogue sequence. The ET compiler 
produces a Pascal procedure representing a 
state machine that is traversed by the run- 
time UIMS interpreter. The interpreter 
takes on the burden of dialogue formatting, 
default management (including heuristics 
to look ahead in the dialogue sequence), 
syntax checks on alphanumeric entry, pick 
queuing and feedback, and interactive 
device control. In this way, much of the 
bookkeeping associated with a complex in- 
teractive application is removed from the 
domain of application programming. 

The toolkit UIMS is currently being used 
in a wide variety of applications, including 
three-dimensional geometry construction 
and manipulation for points, curves, 
surfaces, and volumes; finite element mod- 
eling; drafting and documentation; hierar- 
chical design charts; space station analysis; 
oil well log history analysis; and interactive 
panel design. Overall experience with the 
toolkit UIMS as an interactive application 
development approach has been excellent 
in terms of quality of dialogue, amount of 
interactive application functions that can 
be effectively produced, extensibility, and 
portability. 

2. 

a. 

b. 
C. 

d. 

e. 

f. 

h. 

Interface Management Concepts 

Dialogue independence: A dialogue pro- 
grammer represents dialogue in an in- 
dependent language that is precompiled 
and traversed by a run-time interpreter. 
Structural model of interface: None. 
Representation of interface: Dialogue is 
characterized as a hierarchy with free 
traversal. A dialogue programmer uses a 
dialogue programming language that ex- 
tends Pascal specification and declara- 
tive structures while keeping Pascal 
control structures. 
Interface development tools: System text 
editor is used to produce dialogue pro- 
gramming language code. 
Dialogue developer rule: No, dialogue is 
programmed. 
System development methodology: Func- 
tional decomposition via an internally 
developed method called Prime/Com- 
mon hierarchies. PCMAN is an appli- 
cation written with the toolkit UIMS 
for constructing other applications. Dia- 
logue is written before application code 
is written. 
Rapid prototyping: Dialogue can be ex- 
ercised with application code stubbed 
out. 
Control structure: Strictly adheres to 
dialogue dominant or external architec- 
ture. 

3. Features of System 

a. Internal representation of interface defi- 
nitions 

l At implementation time: Executable 
code representing state tables. 

l At prototyping time: Executable code 
representing state tables. 

l At run time: Executable code repre- 
senting state tables. 

b. Lexical constraints: The system vali- 
dates end-user keystrokes under appli- 
cation-specified constraints, prevents 
erroneous picking, queues input when 
requested, and provides multiple feed- 
back styles. 
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C. 

a. 

e. 

f. 

g. 

h. 

1. 

4. 

;: 

C. 

d. 

5. 

a. 
b. 

1 
e. 

Input dialogue: Input validation is pro- 
grammed. 
Output dialogue: Output dialogue is pro- 
grammed. 
Relationship between input and output 
dialogue: Output dialogue is controlled 
by the application program. Services are 
provided for application error messages 
and help displays. 
Help: Help is keyed to dialogue frag- 
ments and can be accessed at any time. 
Pragmatics: Operates with logical de- 
vices. 
Multiple input devices: All devices can 
be active simultaneously. The toolkit 
UIMS uses an interrupt driver and reads 
the input to determine the proper de- 
fault path without application interven- 
tion. 
Support environment and graphics: Op- 
erating system independent, but runs on 
VM/CMS, MS/DOS, and UNIX. Cur- 
rent application dialogue is textual. A 
forms mode provides convenient for- 
matting for complex text mode entities. 

Miscellaneous Questions 

Human factors built in: No. 
Sequential versus asynchronous dia- 
logue: Current implementation allows 
only sequential dialogues; future re- 
search will include capabilities for asyn- 
chronous dialogue. 
Generality of interaction style: Primarily 
menu based; an alternate command lan- 
guage interface (transparent to the ap- 
plication) is available. 
Interface evaluation: Keystroke capture 
is possible. 

Implementation 

Languages: Pascal. 
Operating system: IBM VM/CMS, 
MS/DOS, UNIX System V. 
Date work begun: 1980. 
Status: Internal product. 
Personnel: Two computer scientists in 
design/implementation of UIMS; ten 

others in use of toolkit UIMS for appli- 
cation development. 

f. Self-creating: No. 

University of Alberta UIMS 

1. General Description of System 

The University of Alberta UIMS [Green 
19851 is an experimental UIMS with three 
goals: 

l To evaluate the Seeheim model of hu- 
man-computer interfaces. 

l To provide a test bed for new ideas in 
human-computer interfaces and UIMS. 

l To provide a useful tool for development 
of human-computer interfaces. 

The Seeheim model divides a human- 
computer interface into three main com- 
ponents: the presentation component, the 
dialogue control component, and the appli- 
cation interface model. The “presentation 
component” can be viewed as the lexical 
level of the interface, responsible for device 
level interactions. The “dialogue control 
component” manages dialogue between the 
human and the computer system. The 
“application interface model” forms the 
interface between the human-computer in- 
terface and the other parts of the applica- 
tion. The University of Alberta UIMS 
provides a collection of tools that can be 
used to design these three components. 
These tools can be used to describe screen 
layout, device assignments, dialogue struc- 
ture, and interaction with the application 
program. The result of the design part of 
the UIMS is a detailed representation of 
the human-computer interface. 

One of the main design goals is to give 
the human-computer dialogue developer as 
much freedom as possible. One way in 
which this has been done is to provide 
multiple tools for each of the three com- 
ponents. If the developer does not like one 
of the tools, the developer can switch to 
another of the tools. The UIMS has a num- 
ber of well-defined ways in which the de- 
veloper can modify it in order to fit the 
developer’s personal design style and can 
easily add new interaction and display tech- 
niques from existing libraries. These new 
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techniques have the same status as system- 
supplied ones. The developer can also save 
commonly used parts of dialogues in a li- h. 
brary. Another important feature of this 
UIMS is a concentration on interactive 
graphical techniques and direct manipula- 
tion in the design tools to increase produc- 
tivity of the developers. 3. 

2. 

a. 

b. 
C. 

d. 

a. 
Interface Management Concepts 

Dialogue independence: The human- 
computer interface and other parts of 
the application are viewed as separate 
processes, although they need not be 
implemented this way. As much as pos- 
sible, the interface can be designed in- 
dependently of other parts of the b 
program. 
Structural model of interface: None. 
Representation of interface: Dialogue c. 
representation is based on events and 
event handlers. Events are similar to 
messages and can be generated by the 
end-user, the application program, or 
other event handlers. Event handlers 
are processes capable of processing 
events. There can be many concurrently 
executing event handlers, and the set of 

d. 

event handlers can change over time. 
Most common dialogue notations, such 
as transition networks, RTNs, ATNs, 
and grammars can be translated into 
event handlers. 
Interface development tools: Two inter- 
face development tools exist. One is a 
high-level programming language based 
on event handlers. The other is a graph- 

e. 

ical recursive transition network (RTN) 
editor. Both tools produce a common 
representation for the dialogue. New in- 
terface development tools can easily be 
added to the UIMS as long as they pro- 
duce this common representation as 
their output. 
Dialogue developer role: Supported by 
interface development tools. 
System development methodology: None; 
UIMS is an implementation tool. f. 
Rapid prototyping: Most parts of the 
human-computer interface can be tried 
as they are designed; a completed appli- 

cation is not required to test the inter- 
face. 
Control structure: An event-based con- 
trol structure is under control of the 
dialogue developer and application pro- 
grammer. 

Features of System 

Internal representation of interface defi- 
nitions 
l At implementation time: Database and 

executable code. 
l At prototyping time: Database and ex- 

ecutable code. 
l At run time: Database and executable 

code. 
Lexical constraints: Handled by individ- 
ual interaction techniques in a manner 
appropriate for that technique. 
Input dialogue: Depending upon the type 
of validation, it is performed by the in- 
teraction technique, in the dialogue con- 
trol component, or just before it is sent 
to the application. The application 
(computation) does not need to validate 
input. 
Output dialogue: Most output from the 
UIMS is generated by display tech- 
niques, which are implemented as pro- 
cedures in the underlying programming 
language. When information is dis- 
played, the display technique extracts 
relevant data from the information that 
has been passed to the human-computer 
interface. 
Relationship between input and output 
dialogue: There is essentially no distinc- 
tion between input and output dialogue. 
Other parts of the application are 
viewed as an input device by the human- 
computer interface. Thus, all interface 
development tools can be used to inter- 
pret messages from the application. All 
prompts, help information, and most er- 
ror messages are handled inside the hu- 
man-computer interface; they are not 
the concern of the application. 
Help: No special facilities for help exist; 
a dialogue developer can provide help 
through presentation and dialogue con- 
trol component tools. 
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g. 

h. 

1. 

4. 

a. 

b. 

C. 

d. 

5. 

;: 

Ii. 

;: 

Pragmatics: Handled somewhat through 
the presentation component. 
Multiple input devices: UIMS is based 
on the concept of concurrent processes; 
therefore, there can be any number of 
active dialogues or devices. The under- 
lying run-time system is responsible for 
process switching and ensuring that 
each device and dialogue gets its share 
of processor time. 
Support environment and graphics: 
Runs under the UNIX operating sys- 
tem but is relatively independent. All 
input and output is through a device- 
independent window manager. Most 
human-computer interfaces produced 
by this UIMS make extensive use of 
graphics. Its main application areas are 
computer-aided design and computer 
animation. 

Miscellaneous Questions 

Human factors built in: Tools do not 
enforce any human factors principles; 
human factors of the design are left to 
the dialogue developer. 
Sequential versus asynchronous dia- 
logue: Dialogue structure is completely 
under control of the dialogue developer. 
Any dialogue that can be programmed 
can, in theory, be implemented using 
the dialogue development tools. 
Generality of interaction style: Can sup- 
port a wide range of interaction styles; 
tools can be customized to generate in- 
terfaces with any particular interaction 
style. Most of this adaptation is accom- 
plished through libraries of interaction 
and display techniques. 
Interface evalaution: No. 

Implementation 

Languages: C. 
Operating system: UNIX. 
Date work begun: April 1984. 
Status: Experimental. 
Personnel: Five computer scientists. 
Self-creating: Yes. 
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