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Interface Problems and Interface Resources 
Stephen J. Payne 

Kinds of Psychology 

For the sake of argument, we can consider current psychological research to belong 
to one of three paradigms, according to whether it is driven primarily by the 
exposure and scoping of phenomena, by the specification and application of general 
mental architectures, or by understanding the problems that people have to solve 
and the environmental resources that they may utilize to so do. Most experimental 
psychology is phenomenon-driven. A phenomenon, such as the recency effect, or 
semantic priming, is discovered in the laboratory (or, occasionally, noticed in every- 
day life and then confirmed in the laboratory), and then pursued relentlessly 
through a series of ever-more-intricate experiments, to discover its scope across 
experimental conditions. nplcally, this research leads to isolated theories targeted 
at explaining specific phenomena. Theoretical development then progresses by the 
articulation of binary oppositions: Does episodic memory rely on a different system 
to semantic memory, or the same system? Is there one mental lexicon or two? 
Newel1 (1973), observing this pattern, complained that the game of 20 questions 
could never be won, as research would uncover more binary oppostions than it ever 
could resolve. 

In place of phenomenon-driven psychology, Newell argued for the search for 
"models of control processes" - what today would be called cognitive architectures- 
which could be programmed to mimic intelligent human performance on a wide 
range of tasks while respecting known constraints on human information processing. 
His plea has been widely attended to, and several of the most influential current 
psychological theories are general architectures of this kind. Newell's SOAR and 
Anderson's ACT* are paradigm cases, and, though there are different emphases, 
connectionist mechanisms, such as pattern associators or the Boltzmann machine, 
are often described as candidate cognitive architectures. 

Architecture-driven research runs into difficulties of its own. The first, and most 
significant is computational power. In order to capture the targeted range of empiri- 
cal phenomena, architectures may have to be so flexible as to provide very few 
constraints on algorithms for particular tasks, and therefore to supply very little 
empirical muscle. The second difficulty, somewhat ironically, is that architectures 
themselves tend to be shaped far more by some phenomena - their "signature 
phenomena" (Anderson, in press) - than by others within their broad explanatory 
scope. So architectures never really escape from the dilemmas of phenomenon- 
driven research. Anderson (in press) notes that ACT* was shaped by the fan effect 
(Anderson, 1983), and that SOAR was shaped by the power law of practice (Newel1 
& Rosenbloom, 1981). 

None of these criticisms insists that either phenomenon-driven or architecture- 
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driven research should be abandoned. Some phenomena are intrinsically fascinat- 
ing or economically important, and worth studying in their own right, whatever the 
limits on their broader theoretical significance. Likewise, the problems of cognitive 
architectures may yet be overcome, allowing architectures that are both sufficiently 
powerful and sufficiently limited to support meaningful explanations, without being 
constrained too heavily by the need elegantly to treat one particular phenomenon. 
Yet the weaknesses are apparent, and there is a third alternative, which overcomes 
many of these weaknesses. 

The third approach maintains that to understand the way the mind works, one 
must understand the problems it solves and the environmental resources that can be 
exploited in the solution of these problems. A psychology driven from an analysis 
of problems and resources will still need to uncover phenomena and to posit mecha- 
nisms. But the phenomena will act as clues to the construction of accounts of how 
people solve their problems, and the mechanisms will be offered in the service of 
particular solutions. 

I will call this problem/resource-driven approach "ecological" as it relies so heavily 
on an analysis of the problems persons face in their everyday environment. In my 
reading, the problem/resource orientation is a key aspect of Gibson's (1979) ecologi- 
cal approach to perception and of Neisser's (1978) prescription for memory research; 
but by adopting this label for the general orientation I do not wish to embrace all the 
implications that these authors derive, such as the rejection of mental processing 
(Gibson) or the preference for phenomena over theory (Neisser). Inde@, David 
Marr's (1982) work on vision, with its heavy emphasis on computation, and on 
theory, but its disenchantment with general mechanisms, is also ecological in the 
sense intended here, although from his philosophy, I am rejecting the exclusive 
emphasis on encapsulated elementary processing modules. Marr introduced the 
important idea of a "computational theory": a rather awkward term'to denote that 
analyses of problems, analyses of what has to be computed, can themselves have 
theoretical status, indeed preeminent theoretical status, independent of algorithms 
or representations. Anderson (in press) has recently applied Marr's insight to the 
analysis of human memory, showing that several classical phenomena may best be 
explained at the computational level, independent of cognitive architecture. 

As a final example of the ecological approach, I would cite aspects of Newel1 and 
Simon's (1972) approach to problem solving. A cornerstone of their work is to 
analyze in detail the structure of the problems that are being solved. Though Marr 
himself is dismissive of their work, he focuses his attack on the use of production 
systems. (From our standpoint, another problem is the exclusive focus on artificial 
puzzles.) But Newel1 and Simon's other major integrative idea - the problem 
space - is, it seems to me, a candidate computational theory in Marr's sense. The 
work reported in this chapter will use the problem space hypothesis as a framework 
for ecological analysis of artifacts. 

Marr (1982) offers a persuasive analogy to argue for the ecological (problem1 
resource-oriented) approach. To understand how a bird flies, he notes, one cannot 
build a theory purely from studies of feathers and wings. Instead, one needs an 
account of aerodynamics, of what it means to fly, and of what it takes to fly. Only in 

n 



130 Payne 

terms of the aerodynamic theory can the structure of feathers and wings make 
sense. 

Of course, the ecological approach also has its critics. One might be worried, for 
example, that different problems will need different theories, so that much of what 
psychologists have to say will not be very general. This is one of the frequent 
arguments for cognitive architectures - they express the common ground of many 
task-dependent theories. Another approach would be to bolster the power of task 
analysis - to develop a taxonomy of tasks, so that the relations between tasks and 
theories could be structured. The chapter will offer the beginnings of a move 
toward such a taxonomy for interface tasks. A different kind of response to the 
task-theory dilemma is simply not to worry. A theory of a single task, provided it is 
an important enough task, would be well worth having. The tasks of human- 
computer interaction are, for practical purposes, of just this kind. 

Kinds of Human-Computer Interaction 

Psychological research in HCI has been dominated by the first two orientations; it is 
typically either phenomenon-driven or architecture-driven. Phenomenon-driven re- 
search in HCI, like that in psychology, is fruitful but ultimately unsatisfying. 
Phenomenon-driven HCI exploits "usability phenomena," close siblings of stan- 
dard psychological phenomena: Strong examples include stimulus-response com- 
patibility and the improved learnability afforded by consistent over inconsistent 
design. These phenomena can be directly encoded as guidelines for design and as 
such have had a direct and important impact on real design work. Ultimately, 
however, the empirical scoping of these phenomena is an inadequate basis for 
application of the guidelines, as discussed by Barnard (this volume). 

Architecture-driven HCI research began with Card, Moran, and Newell's (1983) 
model information processor and has progressed through Kieras and Polson's (1985) 
cognitive complexity theory and Barnard's (1987) interacting cognitive subsystems to 
Young, Green, and Simon's (1989) Programmable User Models. The assumption 
underlying all this work is that there are general cognitive constraints, which can be 
embodied in some general architecture and which can inform the design of devices. 
By definition, the architectures are independent of device use. Interacting cognitive 
subsystems (Barnard, 1987) model the flow of information processing between sepa- 
rate memory stores whether the task is using a word processor or recognizing words. 
GOMS models (Card et al., 1983; Kieras & Polson, 1985) describe how methods for 
performing routine tasks may be stored and run, whether the task is editing a docu- 
ment or pruning a rose bush. Programmable User Models (PUMs) (Young, Green, & 
Simon, 1989; Barnard, this volume) rely on SOAR (Laird, Newell, & Rosenbloom, 
1987), the universal architecture mentioned already. 

Indeed, this is surely a strength of these models. The mind can hardly have 
evolved special processing modules to cope with computer systems, so one might 
conclude that the important cognitive psychological constraints are surely generic. I 
resist this conclusion. Of course there are general constraints on human informa- 
tion processing, but, as the ecological approach suggests, the environmental con- 
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straints of problems and resources may be more important and carry more of the 
explanatory load. Simon's (1969) well-known ant parable, in which he argues that 
the complexity of an ant's path is produced by a simple mind processing a complex 
world, makes exactly this point, but the usual implication drawn by scientists of the 
mind is that the goal of specifying an architecture may, after all, be attainable. That 
conclusion may or may not turn out to be fine for long-term science. In the mean- 
time, HCI needs to import some psychology, and my own guess is that the ecologi- 
cal approach will be the more fruitful. 

Adopting an ecological approach entails a conclusion that has profound implica- 
tions for the relationship between psychology and HCI and will overlook the rest of 
this essay: Thought is shaped by tools. This proposition, in various guises, has a long 
history in psychology, notably in Vygotsky's (1978) "instrumental psychology," and 
Bruner's similar orientation (e.g., Bruner & Olson, 1977-1978), but as Norman (this 
volume) points out, it has not entered the mainstream of cognitive science. The eco- 
logical approach insists on such a conclusion because it is so clear that tools change the 
tasks people perform, and thus the basic units of analysis for ecological psychology. 

Accepting the tool dependence of thought constrains realistic application strate- 
gies for the role of psychology in HCI. It entails that HCI cannot be dealt with by 
taking psychological findings or theories off the shelf. Instead, we must try to 
understand why existing devices are good or bad, and to express this understanding 
so that it might be generalized to new designs. This conclusion is essentially the 
same as that reached by Carroll, Kellogg, and Rosson (this volume) but it has been 
reached by a separate route. They argue from a characterization of invention as 
emulation; I have argued from limitations on psychological theory. 

The ecological approach to HCI also dictates the kind of artifact analysis that 
must be done: One must analyze the ways in which artifacts structure people's 
tasks. In this volume, Norman illustrates this kind of analysis by considering a 
simple checklist. Computational artifacts share this effect of task restructuring that 
checklists illustrate, offering users dramatically different resources, and thereby 
posing dramatically separate problems to users, problems that simply did not exist 
when the artifact was not there. 

More complex artifacts set up a more complex web of resources and problems. 
The artifacts are useful only to the extent that they offer users new resources. In so 
doing they set the user new problems, but, in turn, the design of the artifact may 
offer resources for overcoming these artifact-centered problems. For example, a 
text editor gives writers the ability to swiftly edit trial sentences, but only if they can 
work out and remember the editing commands. Modern designs provide the user 
with a resource for this interface problem, in the form of visible menus and simple 
selection protocols. To analyze an artifact, then, is to analyze this interplay of 
interface problems and interface resources. 

A Framework for Understanding How Artifacts Restructure Tasks 

In his discussion of checklists, Norman (this volume) describes their effect on tasks 
at two levels. First, he analyzes the specific resources offered by a checklist, and the 
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new problems that they pose. Then he abstracts to make general claims about the 
way any artifact may restructure a task: It can distribute actions across time or 
across people, and it can demand new actions. 

This discussion raises an important issue for an ecological HCI: At what level of 
generality should artifact analyses be conducted? I believe that rather specific 
analyses will prove necessary to understand the functionality of artifacts, but that 
some relatively general analytic tools can be developed for some issues of user 
interface design, because such issues are often general across a wide range of 
artifacts. 

The work that I report here is pitched at this more general level. The framework 
is derived from Newell and Simon's (1972) notion of a problem space, which under- 
lies most attempts with cognitive psychology and artificial intelligence (AI) to under- 
stand goal directed behavior. The concept of search through a problem space was 
developed to treat simple puzzle-solving tasks. This is no accident - the problem 
space treatment of such tasks is made straightforward by the clearly discrete num- 
ber of states, the clear definition of goal states, the readily itemized operators, and 
so on. This facile analysis is usually attibuted to the puzzle being "well-structured 
problems," but I believe there is another reason. In all such puzzles the user can act 
on and perceive the problem space directly; there is no mediating artifact. 

To analyze the way artifacts restructure tasks, therefore, I suggest comparing 
situations of artifact use with the pure problem spaces of simple puzzle solving, and 
itemizing the additional complexities in the user's situation, and the additional 
resources that are made available. It seems plausible that this top-down analysis of 
the space of interface issues could converge with Carroll et al.'s (this volume) 
bottom-up notion of user concerns. Their most general example concern, What can 
I do, illustrates that artifacts often make the problem space operators obscure. In 
my work to date, I have concentrated on three such aspects of artifact mediation, 
but there are no doubt further aspects that are critical. The three aspects of artifact 
mediation considered in this chapter are: 

The device represents the user's task domain, and the user operates on these 
representations, rather than directly on task objects. 

Operators are not effected directly; an artificial language maps operators onto 
actions. 

Actions are tightly coordinated with the system; their availability and interpretation 
are sensitive to the content and timing of system responses (which may be un- 
known in advance). 

These aspects of device use are double-edged. Each poses a particular interface 
problem, especially a learning problem, but each provides new information- 
processing resources for the user (Payne, 1990). Furthermore, the design of the 
artifact may itself supply resources for the user to overcome the interface problems- 
for example the display design, as we will see, may help the user map from operations 
to actions. 
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Figure 8.1. The MacDraw screen, after two objects have been created, and the circle has been 
selected. 

The remainder of this chapter is structured as follows. The next three sections 
sketch attempts to understand each of these aspects and to provide simple limited 
models that express the understanding so that it might influence design. To provide 
some face validity that the models can be used to develop serious analyses of serious 
artifacts, and to flesh out the initial sketches, the models will then be used in 
conjunction to analyze a modern, popular application program. 

Both to introduce the three minitheories and to illustrate their analytic potential, 
we will consider MacDraw, a direct manipulation drawing system that runs on the 
Apple Macintosh range of computers. Like many Macintosh applications, the user 
interface of MacDraw relies primarily on menus of tools and operations, together 
with direct manipulation of interface objects. Figure 8.1 shows the MacDraw dis- 
play. The icons at the left are the object tools, and the menu-bar heads are pull- 
down menus used for file management and for editing object properties. 

To introduce each of the minitheories, simple aspects of the MacDraw interface 
win be considered, with the emphasis on explaining the theories, through consider- 
ation of the artifact. Once each theory has been introduced, the emphasis will 
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switch to explaining the usability of the artifact, through consideration and coordina- 
tion of the theories. It should be admitted in advance that we will be considering the 
core of MacDraw, rather than the entire system. The central functionality is in- 
cluded in this core; additional interface frills are omitted in the interests of brevity. 

The Device Model 

Compare a display editor (such as VI) with a simple cut-and-paste editor (such as 
MacWrite). The display editor has separate commands for deleting words, deleting 
sentences, deleting paragraphs. The cut-and-paste editor allows all these to be 
achieved with a single command, for deleting strings. The two editors place differ- 
ent demands on the user's understanding. The conceptual entities (Greeno, 1983) 
in the appropriate problem spaces are different. Users of the cut-and-paste editor 
must construct the concept of a string, and the way it maps onto text objects. 

This is an example of a very general interface problem for users. It reflects one of 
the fundamental ways in which devices restructure tasks - the conceptual objects 
that can be manipulated are changed. I suggest that this interface problem can be 
analyzed in terms of a device-oriented elaboration of Newell's problem space hy- 
pothesis, namely the yoked state space (YSS) hypothesis: The user of any device 
must construct and maintain at least two separate state spaces, the goal space and 
the device space, and a semantic mapping between them (Payne, 1987; Payne, 
Squibb, & Howes, 1990). 

The goal space represents the "external" world that can be manipulated with the 
device. The minimal device space must be capable of representing all the states in 
the goal space. Device operators allow the user to transform states in the device 
space. The user's overall task is to accomplish a transformation in the goal space, 
but this can be achieved only by applying operators in the device space. Figure 8.2 
sketches a yoked state space for the core functions of the MacDraw application. 
The goal space comprises a document of one or more drawings (to be more precise, 
line drawings with text). The user's task is to create and edit such documents. To do 
this, the user must construct a device space and learn how entities in this device 
space represent drawings and how operations in the device space can thus create 
and transform drawings. Figure 8.2 shows an example device space (which, as we 
shall see later, is rather too simple). The main conceptual entities of the device 
space are files and objects, where a file is defined as a set of objects in particular 
locations, and is in a particular state, according to whether it is saved, open, and 
active (there are cooccurrence restrictions here, in that only open files can be 
active, but these have been omitted from the description for simplicity). Objects are 
defined by their type, shape, size, fill pattern, and pen characteristics. A large 
number of operations act on these entities to create new instances and change 
existing ones. 

The YSS is a kind of computational theory, in that it specifies a function to be 
computed, rather than an algorithm for its computation. It does not specify how the 
knowledge of goal space, device space, and so on are mentally represented; it just 
specifies what must be represented. The particular notation used in Figure 8.2 does 
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Goal Space 

document - drawing' 

Device Space 

file = (object,location)*, file-state 

object = obj-type,shape,size, fill-pattern, pen 

obj-type = text / line / rectangle / ellipse I arc / curve / polygon 

file-state = saved?, open?, active? 

Operations 

open new file 
save file 
activate file 
close file 
print file 

create object 
reshape object 
move object 
change pen 
edit text 
change object-fill pattern 
rotate object 
duplicate object 
delete object 

Semantic Mapping 

document --- file 
drawing --- (object, location)' 

Figure 8.2. A yoked state space model of MacDraw. 

not, therefore, have any theoretical pretensions: The intent is simply to describe 
the important entities and their relationships economically. A more complete psy- 
chological account would address representation and algorithm, but the computa- 
tional theory as is has important empirical consequences and allows interesting 
analyses of user interfaces. 

One way to use YSS in analysis of artifacts is to specify the "ideal" understanding 
a user must construct in order to exploit the device, and to examine the learnability 
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of this specification. Payne et aI. (1990) do this for the kind of cut-and-paste editor 
already introduced, showing experimentally that the concept of a string, and its 
mapping onto text objects, is indeed a central aspect of learnability. A second 
analytic strategy is to consider the implications of a YSS for problem solving. A 
particular device space and semantic mapping will facilitate some goal space 
tranformations and hinder others. When considering such implications of the device 
model, it is important to look beyond the ideal specification to alternative device 
models that are weaker than the ideal understanding, but that may be readily 
available to users and lead to problems in use. In the work on text editors, Payne et 
al. (1990) showed that users who fail to construct the device space concept of a copy 
buffer will use inefficient copying methods. 

Both these analytic stategies will be pursued below, to uncover conceptual diffi- 
culties with MacDraw. 

The Interface Language 

The second interface problem that is common to all computational artifacts is 
mapping operations onto actions. A user who has constructed a yoked state space 
will not be able to do anything with the device before learning how to translate 
device operations into specific action sequences. This aspect of user interfaces can 
be usefully treated as a language, whether the vocabulary is made of lexical items or 
actions, like pointing with a mouse. 

The learnability of such a language was at one time a hot topic for HCI research, 
but has faded from fashion. Why? Partly, I suspect, because the field has become 
more ambitious, wishing to impact the global design of systems, rather than mere 
surface aspects of the interface (the chapters in this book tend to illustrate this 
ambition). Partly also, perhaps, because the success of menu-driven systems has 
mitigated some of the critical difficulties that were apparent with earlier command- 
language designs (Norman, 1981) and which motivated much of the research. Never- 
theless, I believe that the interface language is still a major learnability problem in 
many systems, and still deserving of research attention. 

About eight years ago, under the direction of Thomas Green, I embarked on a 
project to develop a notation that can formally describe interface languages, in a 
way that models the structure of the language as perceived by users. The main clue 
driving the model was the importance of "consistency" in the learnability of inter- 
faces. We argued that many of the important aspects of consistency can be captured 
by a model of user knowledge that: 

Identifies the "simple tasks" that can be routinely performed and that require no 
iterations or branching (these correspond to the operations in the device space); 

Represents these simple tasks by sets of semantic components, reflecting a categori- 
zation of the available operations; 

Rewrites simple tasks into action specifications, using the machinery of grammati- 
cal rewrite rules; 
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Simple tasks 

Operation 

Start new drawing n e w  

Close current drawing close 

Save current drawing s a v e  

Print current drawing once p r in t  

Rule schemas 

Task [Operation] -> action (point, "File"), 
select [Operation] 

select [Operation = new] -> action (drag, "New") 

select [Operation = close] -> action (drag, "Close") 

select [Operation = save] -> action (drag, "Save") 

select [Operation = print] -> action (drag, "Print one") 

Figure 8.3. A simple task-action grammar (TAG) of 
some MacDraw file operations. In this simple example, 
each simple task is defined by the value of a single fea- 
ture, Operation. Rule schemas that contain unvalued 
features are expanded by assigning a value to the feature 
consistently throughout the rule. Action clauses, action 
(action-type, object), are the terminals of the grammar. 

Marks the tokens in rewrite rules with semantic features from the task world (or 
from a model of semantic memory) to capture regularities in the task-action 
mappings. 

These ideas describe a computational theory of task-action mapping. The theory 
can be expressed as an attribute grammar, a task-action grammar (TAG; Payne & 
Green, 1986). A simple example is shown in Figure 8.3, which describes the map- 
pings onto actions of the file operations in the MacDraw device model. This exam- 
ple shows a key principle - structural regularity in the relationship between tasks 
and actions can be captured by higher level rule schemas (in this case a single 
higher-level schema, marked with the task symbol, suffices). 

Task-action grammars illustrate the ecological approach by being constrained to 
illuminating a particular interface problem. Comparing their range of coverage over 
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arbitrary user interface scenarios, with the coverage of universal architectures, as 
Young, Barnard, Simon, and Whittington (1989) do, is thus meaningless (as the 
authors recognize, but their figure 1 seems to deny). What may appear to be a 
weakness of TAG is, I would argue, a virtue. By narrowing their focus, task-action 
grammars can remain very simple and relatively concise, and yet still allow meaning- 
ful psychological insights. I hope that my subsequent MacDraw analysis makes 
good on this promise. 

I do not mean to imply that TAG is without fault; it was initially proposed as a 
kind of base camp - more accurately, perhaps, a first excursion from Phyllis 
Reisner's (1981) base camp - and it has been gratifying that many people have 
taken up the assault, though on different routes (e.g., Hoppe, 1988; Reisner, 1990; 
Tauber, 1988). One particular weakness of TAG is relevant to the focus of this 
chapter: It neglects the vital role that the display can play as a resource for task- 
action mapping. This point is well demonstrated by the experiment of Mayes, 
Draper, McGregor, and Oatley (1988), who found that experienced users of 
MacWrite, a menu-driven user interface, could not recall the names of many fre- 
quently used menu items. This finding was replicated by Payne (1991) using an 
imagined task context to lessen the possibility that recall was artificially depressed 
by lack of goal-derived cues. Yet TAG assumes that users must learn and remember 
the precise mapping from operation to action, albeit in general schematic form 
where possible. To tackle this problem, Andrew Howes and I developed an exten- 
sion to TAG - D-TAG, display-oriented task-action grammar (Howes & Payne, 
1990). 

D-TAG aims to analyze the way the display serves as a resource for the user in 
specifying operations. I t  uses simple formal extensions to the TAG notation, of 
which the most important is a display-item function, which we defined as follows: 

display-item (<task features> <display features>) 

retrieve the  subset of objects in <current display> that have 
<display features>, then retrieve semantic definitions for each 
of these objects from <lexicon> and compare each of these 
definitions t o  <task features>. Return the  best match. The  
function relies o n  two implicit parameters, a lexicon and a 
current display, which are not  denoted in the task-action 
grammars. 

Note that, once again, this is a (rather loose) computational theory. It specifies a 
function to be computed, not a particular representation and algorithm. Howes and 
Payne (1990) also suggest a scheme for representing display features as nested 
frames, each identified by some of the descriptors: "type" (e.g., icon menu), "loca- 
tion" (relative to the nesting frame, e.g., top) and "state" (e.g., highlighted). The 
key point is that display features must be capable of representing descriptions like 
"the item at the top of the left icon menu," as, informally, we have found that users 
often remember just this kind of detail. 
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Display-based rule schema 

Task [Operation] -> action (point, display-item( [Operation], 
[type=menu-bar] ) ), 

action (drag, display-item( [Operation], 
[type=menu-bar; 

type=pull-down-menu; 
location=below; 

type=item] ) ) 

Figure 8.4. A display-based rule schema for the MacDraw file operations. The display- 
item function is used to specify the objects of action clauses indirectly, by matching 
display items against task semantics. The display features are described by nested 
frames, each separated by a semicolon. 

D-TAG allows descriptions of knowledge of interface languages that rely on the 
available information on the computer display. For example, Figure 8.4 shows a D- 
TAG description for the same MacDraw file operations as we considered previ- 
ously. According to the grammar, the user knows that to execute each operation 
you must first point to the item on the menu bar that is semantically closest to the 
operation, then drag down to the item on the pull-down menu that is semantically 
closest. According to this model, then, the screen design of MacDraw allows such a 
user to perform these operations without ever memorizing the specific menu items, 
and thus brings the TAG model of competence into line with the results of Mayes et 
al. (1988). 

Like the YSS model, TAG/D-TAG can be used for analysis in different ways. 
Ideal TAGS can be used to index learnability, by specifying a part of what the ! 
competent user needs to know. More heuristically, TAGS can be used to explore 
alternative perceived structurings of the interface and their implications. What 
happens, for example, when users fail to perceive certain regularities, or perceive 
bogus generalizations that are ultimately misleading? 

Action and Interactivity 

The final type of task restructuring noted previously is coordination with the device. 
The balance of the issue here is more toward the resources for action provided by 
the user interface than toward the problems it poses. 

D-TAG only treats a limited part of that issue, knowledge of the mapping of 
operations onto actions. Another important issue was exposed in the simple experi- 
ments already noted (Payne, 1991). Experienced users of word processors are 
unable to report the precise effects of a frequently used operation, such as searching 
for a specified string, or deleting a word. They fail to remember aspects of the 
dialogue that are vital for the detail of action sequences. The obvious, simple 
conclusion is that users do not commit to memory things that they are able to pick 
up from the display as required. Nevertheless this "uncertainty of effects" phenome- 
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I - P I - P r  U: mouse to File header 

I L A G - I - P ~  - D: pointer to File header 

I L A C I  ~r D: File highlights, pull-down 

\ menu appears 
\ 

U: drag to New 

Figure 8.5. An interaction tree for opening a new file in MacDraw. U, D denote actions by the 
user and device respectively. Each unit interaction (I) is made up of a presentation (Pr) followed 
by an acceptance (Ac). 

non has important implications for models of planning, suggesting a vital part of 
skill is the on-line interpretation of system responses, which must therefore play a 
much larger role than simple feedback. 

1 have recently begun an analysis of this feature of action at the user interface, by 
adapting Clark and Schaefer's (1987, 1989) model of human conversation to de- 
scribe the way meaningful interactions are produced through coordinated presenta- 
tions and acceptances (Payne, 1990). The key claim of this model is that interaction 
is structured into Unit Interactions of two phases, presentation, followed by accep- 
tance. Both presentations and acceptances may be composed out of nested unit 
interactions and, in a sense, achieved collectively by user and device. What distin- 
guishes HCI from human conversation, in this model, is that the criterion for 
eventual acceptance is not mutual grounding, but rather the user's sense that the 
interaction can be accounted for in terms of his or her current purposes. What 
distinguishes HCI from goal-driven action on some passive world is that this ac- 
counting process is done dynamically and incrementally, allowing the user to act 
meaningfully without fully articulating (at the time) goals or plans. 

Figure 8.5 shows a simple interaction tree for the MacDraw new-file operation. 
The figure shows how the Interaction Tree model describes the interaction as a 
sequence and a hierarchy of unit interactions (denoted I). Each unit interaction 
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begins with a presentation by either user (U) or device (D), and ends with an 
acceptance, to which both user and device may contribute, but which ultimately 
must be closed by the user accepting the role of the unit interaction by moving onto 
the next (shown by diagonal acceptance arcs). Interaction trees suggest that interac- 
tion exploits a tight coupling between user action and device responses, and sug- 
gests that many user actions primarily play a role of "accepting" previous actions. 

The analytic ambitions of interaction trees are that, by displaying the conversa- 
tional status of user actions and device responses, they may inform the design of 
these "low-level" aspects of the interface, which, I suspect, are central to the feel of 
the system. Unlike the TAG and YSS models, interaction trees cannot be used to 
describe the overall configuration of a user interface. Instead, the analyst may focus 
on the interaction design for particular use scenarios, or on describing actual ob- 
served interactions between a user and the machine. 

An Analysis of MacDraw 

The coverage of each of the three minitheories described previously is, as I keep 
stressing, strictly limited. This suggests that they might fruitfully be combined to 
provide a cumulation of insights into user interface designs. Our consideration of 
MacDraw file operations has already illustrated this potential, to an extent. But the 
most interesting usability aspects of MacDraw lie not in file handling, but in draw- 
ing. In this section, the problems and resources that are provided by the MacDraw 
drawing interface will be described at each level in turn. 

Constructing a Device Model for MacDraw 

Using MacDraw radically restructures the task of producing line drawings (com- 
pared with using pen and paper). At  the highest level, the task changes from 
drawing to assembly - the user no longer has to draw shapes, rather, they are 
chosen, sized, and assembled into a complete drawing. How can we analyze this 
task restructuring? How can we understand its psychological consequences? The 
key feature of the device space for MacDraw is that it is object-centered. Graphic 
objects, like circles, rectangles, or text objects, can be created and modified by 
selecting from a repertoire of tools; drawings are simply arrangements of objects. 
To use MacDraw successfully, the user must appreciate the important, consistent 
nature of this object-based representation scheme (as is recognized by the user 
manuals, e.g., Claris Corporation, 1988). The user must also appreciate its limita- 
tions, which are not at first obvious, and which can cause problems to users who 
lack an adequate model of the device. 

The simple device space for MacDraw shown in Figure 8.2 illustrates the central 
role played by the concept of an object. The fundamental point is that all sorts of 
geometric shapes are treated as objects, and that operations apply to any such 
objects. This allows powerful generalization, of the kind the string concept provides 
for text editing. Unfortunately, as we shall see, the simplicity of the conceptual model 
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Goal Space _____) Device Space 

duplicate 
+ fi l l  

I duplicate twice 

change pen 

Figure 8.6. A troublesome drawing, with a possible construction trace. 

shown in Figure 8.2 needs to be compromised to fully represent the device. The 
analysis of MacDraw usability will begin by considering the implications of the simple 
object-centered device model shown in Figure 8.2, which can be viewed as represent- 
ing a minimal understanding required for use of the device. Next, inadequacies in this 
device model will be exposed, and the kind of elaborations that must be made to the 
model to capture the intricacies of the MacDraw design will be considered. 

Mapping from the device space to the goal space takes on a rather different 
character with MacDraw than with text editing. In text editing, the goal space is a 
stable structure of relations between text objects: Paragraphs are always made out 
of sentences, which are always made out of words. Drawings are not so uniform: 
They may contain circles inside or outside squares, use unique shapes and shading 
patterns, and so on. It is therefore an ongoing problem for the user to map between 
the current goal state and MacDraw's device space, to instantiate the general seman- 
tic mapping shown in Figure 8.2. 

The fact that most operations apply to any object allows powerful generalization, 
but it also constrains the semantic mapping, as all objects must have internally 
consistent attributes. Often, the user wants to specify an attribute for part of an 
object, but, because MacDraw knows nothing of object parts, this cannot be done. 

The object-centered device model is also needed to explain a limitation on filling, 
which might otherwise frustrate the user. A space enclosed by a number of separate 
lines cannot be filled, as fill-patterns are properties of objects, not of pixel space. 

These two inherent limitations of the rigid object-centered design of MacDraw 
both have important implications for the problem of mapping goal space drawings 
onto device space objects. To illustrate both issues economically with a single 
example, consider the task of creating the drawing shown in Figure 8.6. At first, this 
drawing might appear to be parsable into several different object configurations. 
But many of the most intuitive parses will simply not permit the drawing to be 
replicated. If the grid is created from horizontal and vertical lines (tempting, as the 
duplication operation means that each orientation would only need to be drawn 
once), then the cell could not be filled. If the grid is created out of four boxes, then 
the appearance of the bottom line cannot be changed. If the grid is parsed into a 
square containing a cross, then neither the cell nor the bottom line can be changed. 
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The only solution is to use a strange hybrid of boxes and lines. This troublesome 
semantic mapping is shown in Figure 8.6. Note how these problems might be 
compounded if the desired properties of the drawing are not all specified in ad- 
vance. Certain edits of a drawing depend critically on its construction; the history of 
a design, as well as its final shape, influences possible future developments. 

These points arise from the consistent object-centered design of MacDraw. They 
suggest that a user without a robust device model will often be misled. But other 
usability issues emerge because of quirks in the interface. The first quirky feature of 
the device space is that circles and squares are treated as special kinds of ellipse and 
rectangle respectively. These objects can be created by modifying the method for 
creating the more general object. The nature of these modifications is treated in the 
task-action grammar; the point at this level is that the user needs a particular 
conception of the space of geometric objects. A further quirkiness is that some 
objects are initially created as "frames," filled with nothing, others as "solids," 
filled with white. This difference is visible on the display, rather indistinctly, though 
it affects printed drawings only if objects overlap. It does, however, have implica- 
tions for the selection of objects, as solids can be selected by pointing anywhere on 
their enclosed surface, whereas frames demand precise pointing to the outline. 

Next, consider the grouping operation. The device space in Figure 8.2 suggests 
(as does the user manual) that grouping combines several objects into a single 
composite object, which then behaves just like any other object. However, the 
grouping operation in fact maintains the pregroup object structure (to implement 
ungrouping presumably), leading to a nasty inconsistency. If a polygon is made out 
of lines, and then grouped, the polygon can be moved and reshaped as if it were a 
bona fide object. But it cannot be filled, as the grouping operation only applies to 
the lines - the status of the space they surround is unchanged. 

The final device space issues to be confronted concern the relationship between 
text objects and other "geometric" objects. In many respects, the text objects are 
like any others. This consistency has its upsides and its downsides. Text objects are 
created using a tool from the tool menu (although, obviously, the method of cre- 
ation also involves typing), and they can be moved, rotated, and duplicated just like 
regular objects. Further, style changes must be applied to whole text objects: A 
single underlined word will necessitate dividing text into three separate objects- 
before the word, the word, and after the word. 

However, text objects have some special properties, not shared by the others. 
First, text cannot be reshaped. If text is included in a grouped object, then that 
object can be reshaped, but the text will remain in the same size, and in the same 
position relative to the frame of the composite object. All the other objects will 
change relative dimensions, so that the overall effect can be unpredictable. 

Second, there is a special kind of text object, called "paragraphs" in the user 
manual. A paragraph is created without selecting the text tool (see the discussion 
on D-TAG). It differs from standard text objects (called "captions" in the manual) 
in being fitted to the boundaries of a geometric object, if one is selected. 

Third, text can be edited, using simple cut-and-paste edit functions. Editing, like 
creation, begins with selection of the text tool. By then pointing to an existing text 
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\ertical line 

Figure 8.7. An elaborated concept of object type for the MacDraw device 
model. 

object insertions and other edits can be accomplished. In fact, a full device model 
for MacDraw will contain a model for text objects similar to that described by 
Payne et al. (1990). However, if a text object is selected, before editing, and the 
text tool is not selected, the whole text object will be replaced by any new typing. 
Furthermore, this edit cannot be recovered. 

All these properties of text objects must be understood to use MacDraw without 
difficulty. They can combine to produce behavior that, without the correct device 
model, is very hard to interpret. Imagine that one wishes to insert new text in text 
that is part of a grouped object. The user should realize that this cannot be done 
without ungrouping, as the change is not to the grouped object as a whole. How- 
ever, a user with an incomplete model might fail to realize this limitation. What 
happens? A new text object is created, overlaying the first. This may result in the 
first being obscured, or, worse perhaps, if the "insert" is within a space in the 
original text, the failure to edit will go unnoticed until, say, the composite object is 
moved, and the new text object is left behind. 

A very similar problem can result when the user wants to add new text immedi- 
ately before or after an existing text object. Does this involve editing or creation? 
To choose between the two, the user must know that text objects are created with 
leading and trailing blanks on every line. Typing within the range thus defined will 
append to the existing object; typing outside these borders will create a new object. 

To interact skillfully with MacDraw, then, the user needs to construct several 
elaborations on the device space of Figure 8.2, especially the object entity. Figure 
8.7 gives a schematic of this more adequate, elaborate model of object types. 

Task-Action Grammars of MacDmw 

Task-action grammars of MacDraw have already been published by Payne and 
Green (1986), and Schiele and Green (1990). Payne and Green (1986) focused on the 
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issue of "special" objects, circles, squares, horizontal and vertical lines, and "special" 
object movements, constrained to vertical and horizontal. In the MacDraw interac- 
tion language, both of these constraints are specified by holding down the shift key 
while performing the requisite action. However, as the TAG analysis by Payne and 
Green exposed, this consistency can be captured only if the shift-key depression 
interrupts the standard sequence of pointing and dragging. Payne and Green argue 
that this organizational conflict will lead many users to simply ignore (or never 
discover) the constrained form of movement. 

A point worth noting in the current context is that Payne and Green's analysis 
relied on the concepts of "special" objects being available to the user. The device 
space and the task-action grammar are closely related. In particular, the device 
space specifies the granularity of simple tasks, and also provides semantic features 
for organizing the task-action mappings. (For an artifact analysis that rests on this 
chain of influence, see Payne, 1989.) 

Howes and Payne (1990) use a D-TAG to analyze an inconsistency in the 
MacDraw interface. With all objects except text, creation of the object leads to 
automatic deselection of the object tool. With text, the tool remains selected until 
specifically deselected. 

In the light of this previous work, the discussion of usability issues arising from a 
D-TAG analysis of MacDraw will be limited to some specific points, relating to 
some of those raised in the discussion of the device space. Figure 8.8 shows a partial 
D-TAG for the tasks of creating and editing objects. The D-TAG shows how 
tempting organizations of the language can produce inappropriate generalizations 
that will lead to errors in performance. Rules marked with an asterisk denote 
overgeneral schemas of this kind. Accurate performance requires knowledge of the 
more specialized forms marked with letters. 

The first misgeneralization involves object creation. Almost all object creations 
begin with selection of the appropriate tool icon, which is done in a uniform way. 
The user might well be inclined to form a completely general creation schema (Rule 
I) ,  which cannot cope with the case of paragraph creation. The prediction is that 
users, especially those who do not read the manual, will rarely use paragraph text. 

The second misgeneralization involves object modification. Again, almost all 
modifications begin with selection of the to-be-modified object. Furthermore, all 
"discrete" modifications, such as filling, rotating, flipping, changing font, and chang- 
ing line width, can then be achieved by using a simple display-based rule (Rule 3). 
Unfortunately, as noted, text modification must begin with selection of the text 
tool, rather than a text object. Failure to encode this special case has very unpleas- 
ant results, as attempting to edit with a text object selected results in the replace- 
ment of that object. An appropriate task-action grammar therefore relies heavily 
on features of the more elaborate device space shown in Figure 8.7. 

For the user who does construct an appropriate organization, note how closely 
related are the methods for editing and creating text. The organization of the task- 
action grammar thus compounds the potential problem noted previously, of inadver- 
tent creation of new text objects. 
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Simple Tasks 
Features 

Obj-type Effect Change-type Change 

Create geometric object 
Create text caption 
Create text paragraph 
Change object shape 
Rotate object 
Flip object 
Fill object 
Insert text 

geometric create  
caption create  
paragraph create  
geometric modify cont shape  
an Y modify discrete rotate 
any  modify discrete flip 
any  modify discrete fill 
text modify cont insert 

Rule Schemas 

*1. Task[Effect=create, Obj-type] -r select tool 
create [Obj-type] 

1a.Task [Effeckcreate, Obj-type = geometric] -> select tool 
action (point, val-from-goal) 
action (drag, val-from-goal) 

lb. Task [Effect=create, Obj-type=caption] -> select tool 
action (point, val-from-goal) 
action (type, val-from-goal) 

lc .  Task [Effeckcreate, Obj-type=paragraph] -> action (point, val-from-goal) 
action (type, val-from-goal) 

'2. Task [Effect=modify] -> select object 
modify [Change-type, Change] 

2a. Task [Effect=modify, Obj-type=text] -> select tool 
action (point, val-from-goal) 
action (type, val-from-goal) 

2b. Task [Effect=modify, Obj-type=geometric, Change-type=discrete] -> 
select object 
modify [Change-type, Change] 

3. modify [Change-type = discrete] -> 

action (point, display-item( [Change], 
[type=menu-bar] ) ), 

action (drag, display-item( [Change]. 
[type=menu-bar; 

type=pull-down-menu; 
location=below; 

type=item] ) ) 

Figure 8.8. A partial D-TAG for MacDraw. 
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I P r -  I - P r  1 - P r  U: mouse to tool icon 

D: pointer to tool icon 
IAC 

* U: depress mouse button 
I 

L A - I - P r  D: ~o in t e r  moves and 
changes shape 

Figure 8.9. An interaction tree for MacDraw tool selection. Bold arcs show a misparsing error. 

interacting With MacDraw 

The MacDraw D-TAG shows a role for the static aspects of the device's display, but 
it ignores the dynamics of device responses, which, I argue, play a big role in the 
specification of action. These aspects of interactivity can be approached with the 
interaction-tree notation, described previously. The interaction-tree notation is 
much less well developed than task-action grammars. Nevertheless, I feel that 
interaction-tree descriptions of MacDraw interaction patterns do throw some light 
on the interactivity of the interface. 

Payne (1990) describes an interaction tree for MacDraw tool selection, showing 
how, and why, the device's response to a mouse-button depression on a tool icon 
can be misleading to novices. The point, briefly, is that button depression does not 
actually achieve anything, but MacDraw's shimmering tool icon suggests that it 
does, leading many novices to prematurely "accept" the selection presentation by 
moving (dragging) into the drawing area before releasing the mouse button to 
complete the tool selection. Figure 8.9 illustrates this problem with the interaction 
design, by showing the interaction tree for the ideal interaction sequence, and 
overlaying this with "parsing-error" arcs that describe a particular user's observed 
difficulty. 

Figure 8.10 shows an interaction tree for selecting multiple objects. This method 
is not shown in the D-TAG. It is achieved by pointing to some place on the screen 
outside the perimeter of the multiple-object configuration, and dragging to "lasso" 
the entire configuration. In this case, the problem is that the device does not offer 
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I - Pr- I - P r  U: point above and to the left 

1 1 ,  of group of objects, depress I I L ~ c - I - p r  mouse button \ .  D: pointer changes to hand 

I L - I - P r  Act U: drag to below and to the right 

L L A C 1  p r  
of group of objects 

D: rectangle is traced 

Ac- I - P r  U: release mouse button 

D: objects marked as selected 

A c  

I - P r  - U: ........... 

Figure 8.10. An interaction tree for selecting multiple objects. 

rich enough feedback to allow the user's acceptance to be informed. The interaction 
tree suggests that the user's action of releasing the mouse button signals acceptance 
of a presentation that plays the role of selecting a set of objects. Yet the device does 
not display which objects have been selected until after this acceptance. Ideally, the 
interaction should be designed so that user acceptance can be delayed until after 
definite feedback about the objects that have been selected. 

Finally, Figure 8.11 shows the interaction trees for both editing and creating text. 
The point here is that the detailed behavior of the device is identical in both cases. 
Of course, one does not really need to draw an interaction tree to illustrate this 
equivalence, but one does need to focus on the low-level interactivity of the design, 
and no existing models support such a focus. The lack of any perceptual distinction 
between editing and creating text exacerbated the possibility of inadvertent cre- 
ation of new text objects when the intention is to edit an existing object (or vice 
versa). According to our analysis, this particular interface problem is reflected at all 
levels, from the concepts of the device space and the organization of action se- 
quences to the dynamics of device interactivity. 

Discussion 

By analyzing one artifact through the filters of three separate minitheories, I hope 
to have illustrated how limited models driven through the analysis of problems and 
resources can be integrated. Because of their limited focus, the models provide 
complementary insights into the psychological implications of the user interface. 

The case study illustrates, 1 hope, that one can analyze the ways in which artifacts 
restructure tasks. It thus instantiates the "application strategy" that was derived 
earlier in the chapter from a characterization of ecological psychology. To this point 
in the chapter, however, I have not directly addressed a central question for this 
book - how might psychology impact design? I have argued that the best strategy is 
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L Ac-1- p r  
\ D: tool icon highlights 

- I P r  Ac\ U: move to drawing area 

I A c - I -  P r D: pointer changes to carat 
\ A,. 

I P r  U: depress mouse button 
I 

LAC-I- D: flashing cursor appears 

I-- A c  U: type text 

Figure 8.11. An interaction tree for editing or creating text objects. 

to understand what is good or bad about existing artifacts, but I have said nothing 
about how such understanding might feed the design process. It is time to character- 
ize such a vision, to make some case for the usefulness of problem/resource artifact 
analysis. 

First, let us consider the class of design activities to which this research might be 
addressed. The most obvious target is redesign of existing systems. Our exposure of 
some potential usability difficulties with MacDraw illustrates how redesign might be 
driven by this kind of detailed artifact analysis. Since the analysis does not rely on 
empirical studies (except to test the validity of the points that arise), it can be 
targeted at what is often called "early evaluation," using interface specifications 
rather than prototypes or products. The redesign of specifications is surely cheaper 
than the redesign of products. 

A different application focus arises from the focus of the models on analyzing the 
problems that users have to overcome. Such an analysis seems intuitively likely to 
speak to design of instructions or to other interface extensions designed to help 
users with these problems. In the case of MacDraw, for example, it seems plausible 
that instruction in the complexities of the device model could avoid many difficul- 
ties of interpretation. The user manual stresses the object model, but, to my mind, 
does not expose the shortcomings of this model, or the inconsistent departures from 
it. Users will doubtless discover some of these problems the hard way, and may be 
forced to build a more adequate device model through trial and error. 

The experimental literature in HCI shows that instructional mental models might 
have beneficial effects (e.g., Bibby & Payne, 1990; Halasz & Moran, 1983; Kieras 
& Bovair, 1984; Payne, 1988) but nothing in that literature is able to offer specific 
guidelines for how to develop and convey such models. The YSS model is a con- 
strained theory about the nature of device models. In unpublished work at the 
University of Lancaster, my colleagues and I have used the model to drive the 
design of successful instructions for a menu-driven computer system that allows 
remote diagnosis of faults in telephone circuits. Note that this system is removed 
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from text editing and MacDraw, supporting the claim that the model is quite 
general. 

Having identified a set of design activities that might be impacted, the second 
challenge is to package the analytical machinery so that it might be accepted into 
design practice (Carroll, in the introduction to this volume, calls this the applicabil- 
ity constraint). 

The earliest work that I have described, that on task-action grammars, was 
driven by a simple infiltration strategy. Formalisms, like Backus Naur Form (BNF), 
already play an important role in some software engineering projects, for reasons 
that are well known and widely accepted in both software engineering and in 
theoretical psychology (e.g., Broadbent, 1987). It may be possible to exploit this 
existing niche in designers' everyday practice and value systems. TAG as a formal- 
ism is little more complicated than BNF, and the same thing is true of interaction 
trees, although they do not share such a well-known platform. And, though the 
work has not yet been done, it is easy to envisage packaging YSS descriptions in a 
simple uniform notation. Such simple notations may provide what Barnard (this 
volume) calls "application representations," packaging psychological knowledge 
into a tool for designers. 

The status of this strategy today is, I believe, completely open. As far as I am 
aware, no designers outside the research community have used any of these models 
to analyze their designs, but this need not signal any general weakness in the idea. 
The particular notations could be deemed unsuitable or unusable in design con- 
texts, or, as I strongly suspect is the case, they could be unknown. To test the 
strategy fully, some real effort would need to be made to sell the notations to 
designers. But perhaps a more direct impact on design practice could be sought by 
communicating to designers not the models themselves, but the design insights that 
the models generate. One might envisage a role for such models in the Carroll et al. 
scheme for supporting design emulation. The specific usability issues raised in the 
MacDraw analysis, for example, could be viewed as a kind of claims analysis. To 
use Barnard's terminology, the models might serve as a discovery representation for 
such claims analyses. In this role, it seems to me, these ecological minitheories offer 
a particular advantage. By focusing on interface problems and resources, they tend 
to result in analyses that cut across the individual features of an interface design. 
Many of the issues that emerge are caused by the configuration and interrelation of 
design decisions, rather than by the properties of some isolated feature. Carroll and 
Kellogg (1989) are aware that such interrelations are a vital contribution that arti- 
fact analysis needs to be targeted toward, but the current presentations of matrixes 
of claims, each tied to a concrete interface feature, tend to encourage undesired 
atomism. 

Whichever of these two roles is envisaged for the limited models reported in this 
chapter (or their successors), their usefulness will depend on their ability to pro- 
voke insights into the design of artifacts that would otherwise not be readily appar- 
ent. It is a matter of fact that 1 had not noticed some of the usability aspects of 
MacDraw before undertaking the detailed analyses, and that I had not understood 
some of the others. To strengthen the case, further analyses of different artifacts 
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must also succeed in uncovering and understanding aspects of usability. I fully 
expect such work to improve on the example models described in this paper. 
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