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ABSTRACT: Traditional views conceive graphing as knowledge represented in students’
minds. We show in our critique that such views lead to a common assessment problem of how
to account for variations in performance across contexts and tasks, and a common attribution
problem that locates difficulties in students’ deficient cognitive apparatus. Grounded in recent
research of scientists at work and everyday cognition, this article provides an alternative per-
spective that conceives of graphing as observable practices employed to achieve specific goals.
This perspective highlights the nature of graphs as semiotic objects, rhetorical devices, and
conscription devices. This shift in perspective dissolves problems with assessment and inap-
propriate attribution of student difficulties. The plausibility and fruitfulness of the new per-
spective is illustrated in three ways. First, we show that successes and failures of various
graphing curricula become understandable in terms of the presence or absence of social di-
mensions of the practice. Second, we show how our perspective necessitates new assessment
practices. Third, we show how our practice perspective on graphing led us to different learning
environments and to new foci for conducting research in student-centered open-inquiry con-
texts. ©1997 John Wiley & Sons, Inc. Sci Ed 81:91–106, 1997.

INTRODUCTION

The consensual nature of mathematics is expressed and described mathematically; that is, it is
available in the actions of doing intelligible mathematics. To say this does not imply that math-
ematicians’ practices are given a complete and determinate representation by mathematical formu-
lae but that no such representation can be constructed and none is missing. (Lynch, 1992, p. 230)

Our opening quote points out that any understanding of intelligible mathematical practice is
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expressed and described by observable mathematical activity; and no description of mathematical
practice can ever be complete. In contrast, many educational researchers seek mathematical un-
derstandings in individual students’ heads rather than in their public activity of doing math (for a
comprehensive review of the literature on graphing from a cognitive perspective see Leinhardt,
Zaslavsky, & Stein, 1990). A recently published study from this perspective (Berg & Smith,
1994) highlights two major problems with this approach. The first problem relates to assessment.
As Berg and Smith recognize—their study was designed to deal with this—cognitive ability
cannot be read out directly; rather, students’ responses are contingent on question format and con-
text. Second, the cognitive abilities framework easily leads to the conclusion that some individu-
als have innate problems learning graphs: Many students “do not have the mental tools to engage
in a high level construction or interpretation of graphs” (Berg & Smith, 1994, p. 549).

We consider both problems serious enough to warrant a different approach. Thus, graphing
can be viewed from a different perspective, one that is informed by recent work in science
studies. This perspective views graphing as practice; it focuses our attention on students’ com-
petence and rhetorical purposes, and on the affordances of graphs to collective sense-making.
These new foci lead to instructional considerations that parallel those in other areas: to be-
come a good public speaker, basketball player, or research scientist, one has to participate in
the practice as speaker and listener, player and audience, researcher and critic. In the practice
perspective, competence is observable, releasing researchers from constructing putative cog-
nitive frameworks. Furthermore, the practice perspective focuses on participation in meaning-
ful practice and experience; lack of competence is then explained in terms of experience and
degree of participation rather than exclusively in terms of cognitive ability. The purpose of
this article is to detail some of the problems with the cognitive ability view and to sketch an
alternative perspective, graphing as practice, and its implications for assessment and curricu-
lum design.

GRAPHING AS COGNITIVE ABILITY

Unfortunately, many of our subjects do not have the mental tools to engage in a high level
construction or interpretation of graphs. [A study] which investigated the connection between
logical thinking abilities and the ability to construct and interpret graphs, indicates that sub-
jects with deficient logical thinking abilities such as spatial thinking and proportional reason-
ing have significant difficulties when attempting to interpret or construct graphs. (Berg &
Smith, 1994. pp. 549–550)

Many traditional studies in science education view graphing as a composite of individ-
ual cognitive abilities and skills, and view graphs as (mental) representations: Graphs
“serve as representations of real observations and as analytic tools for detecting underly-
ing patterns, which in turn inform the observer and the learner about the phenomena (the
target) under investigation” (Leinhardt et al., 1990, p. 20). In this tradition, researchers
focus on the objectifiable relationships among graphs, and between graphs and corre-
sponding algebraic rules and situations. In their review of the literature on graphing,
Leinhardt et al. direct our attention to three important “spaces” related to graphing:
graphs; situations; and algebraic rules. Mathematics educators are, depending on the cur-
rent curricular topic, interested in algebraic rules, graphs, and the movement within and
between these spaces. Most science educators, however, are more interested in the rela-
tionship between graphs and situations and — mostly limited to older and advanced stu-
dents — to the relation between algebraic rules (such as motion equations, optical
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equations) and situations. Hence, science education research on graphing focuses on
three areas: students’ interpretations of the concepts expressed in graphs; students’ inter-
pretation of graphs as pictures of situations; and students’ problems with the scaling of
graph axes. For example, Beichner (1990) claimed that students “fare poorly when asked
to explain the concepts conveyed by the graphs” (p. 804); other studies focused on stu-
dents’ misconceptions — the “confusion” between height of a graph at a certain point and
the slope at this point — or on students’ mistaken interpretations of graphs as pictures
(Berg & Smith, 1994); and Wavering (1989) claimed that students did “poorly” when
asked to scale the axes of graphs. The reasons for these performances are often sought in
terms of cognitive abilities or development.

Research in the Piagetian tradition frequently uses students-as-concrete-thinker or student-
lacking-logical-thinking-structures as resources to explain failures to do graphing tasks ac-
cording to researchers’ standards (Berg & Philips, 1994; Wavering, 1989). A frequent claim in
the literature maintains—often based on age-related differences in test results—that stu-
dents’ difficulties arise from “deficiencies” in logical reasoning ability. Several studies that
surveyed students from grades 6 or 7 to grade 12 noted that the ability to graph is related to
logical reasoning ability (Berg & Philips, 1994; Wavering, 1989). In one study that employed
this kind of discourse, researchers inferred from their observations that students “quickly
draw first reactions—often an undeliberate line, scribble, or points plotted without a pattern”
(Berg & Smith, 1994, p. 548). Furthermore, scaling axes is said to require some form of ab-
stract reasoning which begins to develop in students in grade 9 and above. Younger students
and anyone else who is not a “formal thinker” cannot be expected to graph properly. If teach-
ers (or researchers) take this perspective, they may easily blame deficiencies on students’ cog-
nitive abilities and end in a state of despair. As the quote opening this section suggests, they
may conclude that students cannot graph because they “do not have the mental tools to en-
gage in a high level construction” or have “deficient logical thinking abilities such as spatial
thinking and proportional reasoning” (Berg & Smith, 1994, p. 549).

Thus, although it is generally recognized that graphing is not an important aspect of in-
struction and a “marginal, extra topic in most commonly used commercial textbooks for most
of the elementary years” (Leinhardt et al., 1990, p. 3), research in this tradition focuses on
what students cannot do. Students have little experience in graphing, yet they are expected to
do it well.1 Such descriptions conjure images of “fuzzy, approximate, and ungrounded be-
liefs” that contrast with the “precise, certain, and justified knowledge” of scientists, and teach-
ers of science (Latour, 1987, p. 216). However, Latour (1987) warned against attributing such
distinctions to cognitive abilities and differences in the respective rationalities. As an example,
Latour described the encounter between native Chinese villagers and Lapérouse, a French
captain and explorer. The differences between the two appeared to be “colossal”: on the one
hand, the implicit, local, approximate beliefs of the Chinese; on the other hand, the explicit,
universal, precise knowledge of the French geographers and cartographers. It would be pre-
mature to attribute these phenomena to concrete versus abstract thinking (which Latour
[1987] has called “first degree intuitions” and “second degree reflexion,” p. 216): Differences
in purpose and cultural resources and practices suffice to account for the differences between
the Chinese locals and the French explorers. Similarly, differences in resources and practices
can account for the differences in graphing competence between students and professional
scientists.
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Measuring Graphing Ability

When graphing is considered a cognitive skill, studies must be concerned with the design of in-
struments that most reliably measure this ability; that is, the problem is one of getting students to
make marks on paper which can be said to stand in direct relationship with the hypothesized cog-
nitive skill. For example, Berg and Smith (1994) designed their study to find out if there were dif-
ferences between multiple choice questions and questions which allow students to draw and
explain their own graphs. Indeed, they found statistically detectable differences in the distribu-
tions of graph types based on test format. From a situated cognition perspective, however, this is
not surprising: the problems framed and solutions constructed are intricately tied to the available
structuring resources and their salience to the individual. Ample research in the everyday use of
mathematics shows that not only is test performance different when the contexts of testing are
changed, but also (and because of the change in context) mathematical performance cannot be
isolated as cognitive ability in people’s heads (Lave, 1988; Scribner, 1986). Rather, “cognition” is
situated such that the setting contributes to and constitutes an important structuring device for
framing problems and constructing solutions. Tools available in a setting (which themselves are
idiosyncratically constructed according to the prior experience of the problem solving individual)
contribute to the form that any single solution takes.

For example, we found in our own research that an elementary teacher, although quite ca-
pable of doubling 13⁄4 cups of flour in a recipe (as she subsequently demonstrated), structured
her work according to the setting. She used a 1-cup measuring device graded in 1⁄4-cup incre-
ments and took first two 1-cup and then two 3⁄4-cup measures of flour rather than multiplying
the quantities to get a required 3.5 cups and measuring this out (McGinn, 1995). This woman
did not have a defect because she did not multiply. Rather, in her solution, she not only used
the required amount of flour, but she also demonstrated her intuitive understanding of the dis-
tributive properties of multiplication and the commutative properties of addition.

For similar reasons, we could have made a serious error in interpreting our data in the fol-
lowing situation. We asked 17 university science and mathematics graduates (who were in
their fifth year to prepare for a teaching career) to solve a problem that we had earlier given to
grade 8 students (Roth & Bowen, 1993). This problem presented a map subdivided into sec-
tions for which data were provided about the percentage of area covered by brambles and the
average amount of light. Based on this information, students were asked to describe any pat-
terns they saw in the data, make claims about what these patterns meant, and to justify those
claims. Seven of 19 groups of grade 8 students used a canonical scientific approach and
graphed; an additional 5 groups used other mathematical approaches as solutions. In contrast,
only one university student used a graph, while the others said that a solution was impossible.
We are far, however, from concluding inferior cognitive ability for the university students.
Rather, the differences in common practices within the respective communities are more
likely explanations. Our grade 8 students were accustomed to constructing mathematical re-
presentations for rhetorical purposes, to convince their peers and teachers of the knowledge
claims they made; they were also used to analyzing the mathematical re-presentations pre-
pared by their peers. The university students, on the other hand, had a standard fare of science
teaching. Applied to the testing of graphing from a cognitive perspective, it can be expected
that solutions, especially with neophytes in the graphing practice, will be different if students
see labeled graphs and sketches from which they choose, or if they have blank graphs with la-
beled axes to sketch their own graphs (cf. Berg & Smith, 1994).

Some studies have sought to eliminate the testing problem through interviewing, asserting
that interviewees’ responses are unaffected by the interviewer (e.g., Berg & Smith, 1994).
However, the analysis of interviews by researchers with extensive experience in situated cog-
nition and interaction analysis showed that even when the interviewer acts in the most dispas-
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sionate manner to “guarantee” the objectivity of responses, answers showed all signs of being
socially constructed rather than pure measures of the interviewee’s cognition; that is, inter-
viewer and interviewee contributed to the form and content of responses (Suchman & Jordan,
1990). Accordingly, a considerable amount of research shows that cognitive performances are
socially contextualized responses (for a review, see Perret-Clermont, 1993). Any assessment
of interviewees’ competencies is thus affected by social factors including climate of testing
(cooperative or competitive), social dimensions of the situation (individual or public), and
other characteristics (linguistic, motivational, and personal).

The problems with the cognitive ability view of graphing warrant the consideration of new
perspectives. Here, the monograph Science in Action: How to Follow Scientists and Engineers
through Society (Latour, 1987) provides considerable advice. Its sixth rule of method states
that, when faced with attributions of differences to irrationality and naive beliefs, researchers
should study in detail individuals, particularities of their settings, and their practices. Then, if
anything remains unexplained, we may resort to cognitive ability as an explanatory resource.
Following this suggestion, we now turn to graphing as practice.

GRAPHING AS PRACTICE

Practice is our everyday practical activity. It is the human form of life. It precedes subject–
object relations. Through practice, we produce the world, both the world of objects and our
knowledge about this world. Practice is both action and reflection. But practice is also a social
activity; it is produced in cooperation with others. To share practice is also to share an under-
standing of the world with others. (Ehn, 1992, p. 118)

The cognitive ability view of graphing misses a considerable number of issues that arise
from the use of graphs in the everyday pursuit of goals. The notion of practice decenters the
discussion of teaching and learning by focusing on observable features of members’ activities
in the process of accomplishing their goals. The difference between a cognitive ability and a
practice perspective is exemplified by the difference between the meaning of signs (words,
graphs, formulas) residing in someone’s head and the situated use of signs as part of a com-
munity’s everyday discursive practice (Brown, Collins, & Duguid, 1989; Edwards, 1993).
Brown et al. discussed examples of vocabulary learning in which children used words, which
they had learned from dictionaries, in inappropriate ways; they knew the definitions, but they
had no conceptions how the language was used, how the words fit into the discursive practice
as a whole. That is, knowledge acquired away from the context of its use is often piecemeal,
brittle, and useless. On the other hand, Lave (1988, 1993) showed that practices are insepara-
bly tied to members’ goals and intentions. Outside schools, people use graphs to achieve cer-
tain ends: a newspaper editor may illuminate the message of an article by graphing the
relationship between alcohol consumption and cholesterol levels; a physicist may enhance an
article with a graph that underscores a claim about the signal-to-noise ratio of a new detector;
or a science educator may use plots to highlight the different correlations between posttest
scores and prior knowledge for different types of learners. In schools, however, students make
graphs for the purpose of making graphs. That is, to paraphrase Bakhtin (1981), students have
no opportunities to populate graphs with their own intentions. Educators and others often
claim that individuals need to appropriate knowledge and skills before they can legitimately
participate in a practice. However, many complex traditional practices such as tailoring or
midwifery are appropriated as newcomers without prior knowledge legitimately but peripher-
ally participate with more experienced members; through increasing participation and learn-
ing, the newcomers eventually become old-timers and core participants in the practice
(Jordan, 1989; Lave & Wenger, 1991).
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Everyday mathematical practices such as using numbers, graphing, scaling, or timing are
inseparably submerged, tied up, and dispersed within a dense network of ordinary conversa-
tional activities (Lynch, 1991). Thus, “the knowing and learning of mathematics is situated in
social and intellectual communities of practice, and for their knowing of mathematical know-
ing to be active and useful, individuals must learn to act and reason mathematically in the set-
tings of their practice” (Greeno, 1988, p. 482). Consequently, “learning mathematics involves
acquiring aspects of an intellectual practice, rather than just acquiring some information and
skills” (p. 481). As the quotes heading the article and this section show, other authors agree.
Participation in mathematical practices allows discursive and tool-related practices to be ac-
quired through mutual observation, emulation, and correction in shared situations. In the
process, any mathematical expression achieves meaning as part of observable practices and
their circumstances because the consensual culture of mathematics is available only in the ac-
tions of doing intelligible mathematics (Lynch, 1992; Quine, 1987). That is, mathematical
practices—such as graphing—take their meaning from the situation of their use in communi-
ties where members share many of the same assumptions, preconceptions, and common sense
notions (Lave & Wenger, 1991).

Graphing is one of an array of signing practices such as talking, writing, gesturing, draw-
ing, or acting used extensively in scientific communities (Lemke, in press). These practices
are codeployed so that any single one can only be understood within the network of practices,
that is, in its relationships to other practices. To do science, one has to be able to juggle and
combine the various practices that are codeployed to make scientific “concepts.” These prac-
tices relate to natural phenomena not because of some logical necessity but because they are
associated with the conventions established in each field (Latour, 1993). In scientific and engi-
neering communities, graphs have three major purposes: graphs are semiotic objects that con-
stitute and re-present (and reify) other aspects of reality; graphs serve a rhetorical function in
scientific communication; and graphs act as conscription devices that mediate collective sci-
entific activities (talking, constructing facts). In the following three sections, we focus on each
of these aspects by weaving together findings from science studies and our own work.

Graphs as Semiotic Objects

An important point seldom addressed in science education literature is the relationship be-
tween a graph and the reality it constitutes (Leinhardt et al.’s “situations”). In a frequently
used test question, students are required to imagine walking across the room, and then are
given a choice between various graphs, or are asked to draw a graph, re-presenting the imag-
ined walk (Berg & Smith, 1994; Mokros & Tinker, 1987). Here, researchers assume a simple
relationship that can be expressed as {physical experience of, or imagined, walk ↔ graph}
which expresses an isomorphism (or re-presentation). The relationship is bidirectional, be-
cause it is assumed that a literate person can read specifics of the walk from the graph, or con-
struct a graph after making (or imagining) a walk. However, there is evidence that this
relationship has to be constructed in the same way as the relationship between the word “cat”
and some furry creature that meows. Recent studies in philosophy, history of science, and eth-
nomethodology have shown that the graph, like the word, is an independent semiotic object
whose relation to the phenomenon has to be established through considerable work; the rela-
tionship holds because of convention, not because of an a priori ontological connection
(Gooding, 1992; Latour, 1993; Lynch, 1991; Rorty, 1989). In this work, semiotic objects, per-
ceived phenomena, and available tools (technical, linguistic) change and are mutually ad-
justed until they can be regarded as isomorphic.

In a study of physics lectures, we have shown the complexity of the process that translated
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a simple phenomenon (a ball rolling down an inclined plane) into different sets of tables and
graphs, and ultimately sets of sketches which (for the presenting university professor at least)
stood for other more cumbersome verbal and mathematical descriptions of motion (Roth &
Tobin, 1996). Thus, rather than assuming a simple mapping of a walk across the room onto a
graph, it would be more appropriate to study the translations, transformations, and transposi-
tions required to construct the relationship between the event and its re-presentation.

We are not claiming that graphing is a simple practice. Rather, for novices it is quite diffi-
cult to decide if a signal is a sign (semiotic object) that points to an “interesting” phenomenon
or is merely an artifact. Thus, whether the sequence {(x, y) (1, 6.0) (2, 6.1), (3, 6.2), (4, 6.3)},
which can be represented by an x–y line graph, represents a phenomenon of interest or an ar-
tifact is a matter of context. When plotted with the abscissa scaled from 0 to 7, there is hardly
anything to see. If the abscissa is scaled from 6 to 6.5, a steeper curve results. For the experi-
enced person, the choice of axes is driven by theoretical considerations. But even scientists do
not easily separate signal from noise. For example, astronomers had studied photographs and
put them aside as uninteresting. Later, after the first Galilean pulsar was “discovered,” they
studied their photographs again. What they had first read as blotches, suddenly turned into
“good” signals supporting the existence of other pulsars (Garfinkel, Lynch, & Livingston,
1981). The difficult work of reading signals becomes especially clear during controversies
that are eventually declared as hoaxes (Schnabel, 1994). Thus, serious scientists had sup-
ported N-rays and cold fusion until someone else constructed the phenomena as artifacts: they
turned good signals into blotches and wiggles. This issue is not a trivial matter, but part of the
daily work of scientists, politicians, and economists.

Researchers sometimes relate graphing to Piaget’s cognitive developmental levels and for-
mal reasoning (Berg & Philips, 1994; Berg & Smith, 1994; Wavering, 1989). Rather than
building on the associated traditional notions of concrete and abstract, we focus on the nature
of mathematical re-presentations on a continuum from experience-near to experience-distant.
Thus, the notes and sketches students produce in their field site during a study of ecology, and
the samples they bring back to the lab for analysis are experience-near re-presentations of the
original field site. When they transform and summarize this information into lists and tables,
they produce re-presentations that are more removed from the field site; but these re-presenta-
tions exhibit information that reveals the original field experience much more closely than
later transformations of their idea into averages, graphs, and equations on which students base
their knowledge claims, and with which they convince peers and teachers that these knowl-
edge claims are founded (Roth & Bowen, 1994). Whether a person is competent in a complex
practice such as graphing, and uses graphs deliberately and with ease as re-presentational and
rhetorical devices is a function of experience in producing more and more experience-distant
re-presentations rather than just cognitive development (Latour, 1987; Roth, 1995; Wilenski,
1991). We showed that students can become competent in moving from natural objects and
events to increasingly complex re-presentations using a cascade of representational devices
that are more and more experience-distant; and equivalently, they can become experienced in
making the reverse trajectory, from experience-distant graphs to real or possible natural ob-
jects and events, a process usually referred to as interpretation (Roth, in press; Roth & Bowen,
1994).

Graphing as Rhetorical Practice

Science studies research has shown repeatedly how scientists use graphs as rhetorical de-
vices which, in conjunction with texts, elaborate these texts (Bastide, 1990; Lynch, 1990; Star
& Griesemer, 1989). Graphs are used to highlight certain features of researchers’ construc-
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tions about nature.2 In the process, researchers use a variety of processes to make these fea-
tures stand out, and to eliminate others that could be distracting. Geneticists cut and paste au-
dioradiographs used in the “identification” of certain DNA sequences to obtain graphical
re-presentations on which DNA sequences are distributed along the y-axis, and various sam-
ples constitute the categorical x-axis (Amann & Knorr-Cetina, 1988; Knorr-Cetina & Amann,
1990). Physicists frequently use the mathematical practices of integration (or spline functions)
to turn sequences of data points into smooth graphs and give them a more familiar look, or
use differentiation to obtain a dominant peak where data show a continuous and smooth func-
tion. How one can coax a clear “fact” from a seemingly straight-line signal is simulated in
Figure 1. By manipulating the original electronic response (1) in a way that corresponds to
mathematical differentiation, new signals (2, 3) can be constructed which appear to point to a
clear signal from a phenomenon.

Change of scale, change relative to some reference value, and the spatial representation of
time are some other techniques employed to construct phenomena through graphical re-
presentations (Bastide, 1990). Wainer (1992) illustrated an interesting example of how a jour-
nalist’s claim that was supported by a graph could be inverted. The original claim that student
achievement remained constant over a 10-year period despite increasing education expendi-
tures was supported by a double-y-axis graph. By manipulating the scales for both y-axes sep-
arately, Wainer created a graph suggesting that student achievement gains “soared” while
education expenditures remained stable; a simple change of scale supported opposite interpre-
tations. What is almost never made clear in science education (teaching or research) is that
much of scientists’ work is constituted by differentiating blotches and wiggles into just that
and “real signals” (Woolgar, 1990). Here we can see the close relationship between graphs as
a means to constitute a phenomenon (the scientific experimental manipulations that culminate
in a graph through which the phenomenon comes to life), and graphs as clear and unmediated
evidence of a phenomenon that enters everyday discourse as “fact.”

The purpose of manipulations is to help others with less or no experience see what a re-
searcher has seen. But in these manipulations, phenomena are constructed which otherwise do
not exist; these graphs not only bring out phenomena, being constituted in and through scien-
tists’ descriptive work, but are used as evidence for the phenomena (Latour, 1990; Woolgar,
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Figure 1. An example of the processes by means of which physicists construct a “clear” signal from an otherwise
unseaming signal (1). By constructing first (2) and second derivatives (3), minute variations can be amplified and
constructed into “facts.” This simulation was constructed from data points that follow the function f(x) 5 x 1
0.05?asinh(5x).



1990). The precarious relationship between phenomena of the physical world and the repre-
sentational practices of science has been repeatedly pointed out, and described as a sequence
of translations and evidence-fixations (Amann & Knorr-Cetina, 1988; Latour, 1987, 1993).
With respect to science education, we have been able to observe and describe multiple transla-
tions, evidence fixations, and suppressions of unwanted deviations in the teaching of college
level physics for preservice elementary teachers (Roth & Tobin, 1996). In this course, the pro-
fessor’s intent was to enroll his students in viewing the world from a Galilean–Newtonian
framework. From the original staged phenomenon, a ball rolling down an inclined plane, the
professor generated a series of tables and graphs that were supposed to teach an understand-
ing of motion phenomena. What the professor had not considered was that his students were
not competent in the mathematical practices of translating data tables into each other and into
graphs. For the professor, there was a clear and unmistakable link between the phenomenon
and the graphs, whereas there was a big gap and a meaningless correspondence for the stu-
dents.

The question here is not one of accuracy or truth of graphs. Some researchers presume that
people simply have to “accurately interpret graphs and to detect false use of graphs” (Berg &
Smith, 1994, p. 529). However, graphs can be transformed in legitimate ways (as determined
by the community) to emphasize various aspects. Our concerns are whether graphs in their
original or transformed appearance support a claim in a convincing manner. Teachers can then
respond to traditional student questions such as “How do I do the graph?” with “What do you
want the graph to show?” Such a change in educational practice is in line with Lave’s (1988,
1993) recognition of the inseparable link between practices and intentions. Depending on the
students’ current competence, the teacher may decide to provide support on a need-to-know
and just-in-time fashion to help the students reach their goals (Roth & Bowen, 1995).

Graphs as Conscription Devices

As a central aspect of a practice, graphs have another function besides being inscriptions
(semiotic objects) that are used for rhetorical purposes: As conscription devices, graphs bring
together and engage collectivities3 to construct and interpret them (Garfinkel et al., 1981;
Roth & Bowen, 1995; Woolgar, 1990). As conscription devices, graphs coordinate sustained
interactions in the same sense that other visual re-presentations enlist the participation of
those who employ them in the laboratory or in scientific publications, since users must engage
in generating, editing, and correcting graphs during their construction. Here, graphs are cen-
tral to interactions among scientists. Graphs constitute a shared interactional space that facili-
tates communication because of their calibrating effect on what can be taken as shared, and
what has to be negotiated when it becomes obvious that it cannot be taken as shared. Thus,
graphs are not only tasks to be accomplished through talk, but they also make talk meaning-
ful. In this, talk and graphs are in a reflexive relationship such that one draws on the other to
be meaningful.

At various points we have provided analyses of students’ collective sense-making activities
over and about graphs (Roth, 1995, in press; Roth & Bowen, 1994, 1995). These analyses
show that graphs are not only the objects of students’ talk, but also provide students with ad-
ditional communicative resources. Students point directly to data points, lines, and axes; use
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gestures to indicate trends; or invent indexical labels to describe aspects of the graph (e.g.,
“question mark graph” to distinguish a graph resembling the curved shape of a question mark
from a straight line graph). The physical presence of the graph also supports the topical cohe-
sion of the emerging conversation. There are suggestions that this social aspect of using
graphs and other diagrams will lead to increased competence in the “authentic” ways of doing
and talking science (Pea, Sipusic, & Allen, in press; Roschelle, 1990; Roth & Bowen, 1994).
Through their interactions over and about graphing tasks, students become competent users of
graphing practices. This competence has a double nature in that students become proficient in
using graphs to constitute and re-present phenomena of their interest, but also to understand
the relevance of graphing. Students no longer see graphs as unequivocal representations, but
see graphing as a goal-dependent practice of re-presenting (Roth, in press).

IMPLICATIONS FOR SCIENCE EDUCATION

In order to describe and understand, as well as to theorize learning in small groups, detailed
analyses of actual classroom learning have to be conducted. The settings need to provide sta-
ble contexts for students in which they become increasingly knowledgeable. Long-term, fine-
grained collection of data sources can and will provide the data which we will need to
construct viable theories about interactions and learning in small groups. (Roth & Bowen,
1995, p. 125)

New perspectives, like new theories, should not only be plausible and intelligible but fruit-
ful in that they suggest new ways of designing instruction and new research questions. What
does our change in perspective afford to science educators? If graphing is seen as one of many
practices in constructing and re-presenting phenomena, instruction changes in a variety of
ways. Implicit understandings of practice are developed in practice; practices are appropriated
as newcomers participate in them with their peers and with old-timers (Bourdieu & Wacquant,
1992; Brown & Duguid, 1992; Lave, 1993). Thus, if students are to develop graphing compe-
tence, they need to participate actively in the development and maintenance of this practice.
Graphing then becomes a collective activity during which phenomena are constructed; stu-
dents focus on making inscriptions increasingly convincing. Rather than being an abstract
ability attainable only by a few gifted students, graphing becomes a shared social practice par-
alleling many others, in which one is more or less competent, which in part is a function of
the extent of experience. In the collective activity, teachers are more experienced others, old-
timers, who may decide to model canonical practices. Once graphs are part of students’ every-
day communicative practice, they become increasingly palpable objects rather than remaining
experience-distant (abstract) and meaningless displays. When graphs are produced in collec-
tive efforts, they facilitate students’ communication by providing a backdrop to their talk and
gestures; they are outcomes of joint labor and indices for their shared understandings. As an
authentic practice (scientists do it every day), graphing is an important aspect of communica-
tion; when used in classrooms, it can lead to student-centered science talk as recommended
by Lemke (1990). In classrooms, as in scientists’ laboratories, graphs can be tools for con-
structing facts and for mediating, in a reflexive relationship, the interactions during which
facts are constructed. Using this practice perspective, we now take another look at students’
“difficulties.”

Students’“Difficulties” from a Practice Perspective

The problem of the cognitive perspective lies in its concept of a graph as something
that exists in itself and has more or less unambiguous meanings. From this perspective,
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one immediately focuses on students’ errors. On the other hand, if graphing — making
and interpreting graphs — is but one of a range of discursive practices, we begin to focus
on students’ experience and use of graphing. Much like in second language learning, we
would expect those students with few opportunities to engage in graphing as practice to
show less competence than those to whom it is a routine way of talking science. But stud-
ies from a cognitive abilities perspective ask students to make inferences in a domain
where they have few prior opportunities to engage in the practice. (Leinhardt et al. [1990]
noted this lacunae but did not link it to student difficulties.) It is not astonishing that stu-
dents come to conclusions that are at odds with current scientific practice. Such infer-
ences are a familiar phenomenon in learning a language (another practice). For example,
most parents notice that children (who learn English as their mother tongue) at some
point in their development inappropriately generalize the “ed” ending in the construction
of the imperfect tense: They may say “teached” instead of “taught.” Furthermore, those
readers who have acquired proficiency in a second or third language, will find striking
similarities between the iconic confusion of graphs and phenomena, and language learn-
ers’ confusion of literal and metaphoric meanings. In both cases, it would be premature to
assume cognitive deficiencies. While it is clear that, in language learning, increasing
communicative competence is associated with increasing participation in linguistic prac-
tices, similar associations have yet to be made to the appropriation of mathematical and
scientific practices.

Our practice perspective throws new light on the success of microcomputer-based labora-
tory (MBL) instruction (Linn, Layman, & Nachmias, 1987; Mokros & Tinker, 1987; 
Nachmias & Linn, 1987). The benefits of MBL instruction to students’ competence in graph-
ing may not come so much because it changes individual cognition but because the MBL ma-
terials make “graphs [the] central means of communication” (Mokros & Tinker, 1987,
p. 369). In these studies, students engaged in graphing-related practices for extended periods
of time and across many activities (20 activities in the Mokros and Tinker study; 54 activities
over an 18-week period in the Nachmias and Linn study). Furthermore, students used graphs
both as objects to be talked about and as structural resources in communication. That is, in
these studies, graphs also served as conscription devices. Not surprisingly, from our perspec-
tive, the children in these studies showed significant changes in their competence to talk about
and use graphs.

Assessment Practices

Traditional perspectives tend to see students’ competence in a negative form. Throughout
Leinhardt et al.’s review one can read about “students’ difficulties” (p. 22), “iconic confu-
sions” (p. 22), “misconceptions” (p. 30), “misunderstandings” (p. 30), and “limited concep-
tions” (p. 31).4 Such descriptions become meaningless in different perspectives on learning
that replace traditional views of knowing and learning with the notion of participation in prac-
tice (Lave, 1993; Lave & Wenger, 1991). Here, individuals are not evaluated on the basis of
what they can or cannot do, but on the extent to which they participate in specific practices as
described by their status along a trajectory from legitimate peripheral to core participation.
Language is a familiar practice, and language learning a suitable example to make an analogy.
Rather than dwelling on “misunderstandings,” more competent speakers usually assist new-
comers by modeling accepted practices. While we have observed such learning with parents
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and their children, or in French immersion classrooms,5 similar situations seldom exist for
communicative practices in science, including graphing, talking, and writing (Lemke, 1990).
(We present an exception from our own teaching below.)

From a cognitive ability perspective, researchers assume that students should be able to
make inferences about graphs (considered to be objects with unequivocal inherent mean-
ings). Our practice perspective permits educators to avoid a number of problems arising
from unreasonable assumptions. No one would ask a person with 1 or 2 weeks of instruc-
tion per year in a foreign language to make “correct” inferences about complex linguistic
relationships, about double entendres, etc. The practice perspective suggests a focus on de-
veloping competence in graphing as one of many practices that can be used to mathema-
tize experiences for rhetorical purposes. Rather than assessing graphing abilities, science
educators then evaluate students’ competence in making convincing arguments about phe-
nomena with which they are reasonably familiar. From our perspective, the assessment
problem is to determine the extent to which graphs are used as part of rhetorical practices
(means) in the pursuit of meaningful activities (goals) situated in and legitimated by
knowledge communities.

Learning Environments for Participation in Graphing Practices

For researchers in science education, there are important unanswered questions with respect
to graphing. What are the processes by means of which the isomorphism between natural phe-
nomena and their corresponding graphs are constructed?; What trajectories do students take
from their initial attempts as neophytes to become successful members in a community of
graphing practice?; To what extent does competence in constructing graphs help students in
interpreting/deconstructing the graphs produced by others? The following vignette illustrates
a learning environment and the research that we designed based on the outlined view of
graphing (and other purported “skills”) as practice:

Jamie and Miles are students in a grade 8 class engaged in a 10-week investigation of biomes.
Like their peers, the two have staked out a 35-m2 plot (ecozone) in a wooded area of the
school grounds that constitutes their research site. For this first investigation, they have de-
cided to check their hunch that the distribution of plants is related to soil differences. Jamie
and Miles know that they have to make a convincing case for whatever finding they come up
with.

In the field, they select three sampling locations with clearly different plant coverage.
They sketch a map of the physical layout, and mark the three sampling sites and the plants
growing in each. They note a few other observations such as air temperature, cloud coverage,
and amount of light on their ecozone. They take soil samples, but realize that just by looking
at them, it is difficult to assess similarities or differences in a way that would be convincing
enough when they present results to their peers. They take the soil samples and return to the
lab. Here, they consult some of the resource materials, and then settle on a sedimentation test
that can be used to turn a sample, by means of floating, into a stratified sediment with layers of
different composites. They draw side views to scale, but find these not convincing enough as
evidence for a later “sharing” session. Based on information from their resource materials,
they decide to calculate the relative amount (in percent) of each strata in the three samples.
They plot this information on a chart which they overlay with a published grid on classifying
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materials according to the distribution of composite materials. The three samples clearly fall
into different regions of the grid, which Jamie and Miles use to support their claim (made in
their field report and during discussions with other teams) that, in their site, different plant
coverage is associated with differences in soil type.

From a teaching perspective, graphing was embedded in Miles and Jamie’s overall effort to
convince others that differences in soil composition may be related to differences in plant cov-
erage. Our study showed that at the beginning of the school year, neither Miles nor Jamie
used graphs in support of their knowledge claims. Now, in the sixth week of the unit, graph-
ing was the culminating activity in a series of translations by means of which they constructed
their argument (taking ground, floating it, drawing the sediments, calculating proportions,
plotting data points). Here, the students actively engaged in these transformations and re-
flected on them—for these students, practice was action and reflection. Spurred in part by the
teacher’s preference for replicable investigations which require standards across sites and
time, and in part by the difficulties of comparing results in their discussion with groups who
studied different sites, Jamie, Miles, and their peers mathematized their field experience to in-
creasing degrees (Roth & Bowen, 1994). They found graphing as one of their more powerful
rhetorical practices: “When [the teacher] said, ‘How can you prove it,’ we came up with the
idea of the graph.”

Another example that illustrates our focus on practice comes from a physics class. Students
conducted optical experiments to find out if there was a relationship between distance of 
an object to a lens and the distance of the image to the same lens. In part, we used the activity 
to generate discussions among the students about the underdetermination of “laws” when they 
are derived (induced) from data. Figure 2 shows the original data and the polynomial of de-
gree 4 generated by one student pair (curved line represented by a function of the type
f(x) 5 a0 1 a1x 1 a2x

2 1 a3x
3 1 a4x

4). The goodness-of-fit index showed almost perfect fit
(R2 5 0.9997). Other students had proposed different relationships. During the whole-class con-
versation, the teacher proposed the second plot (top scale, straight line) using an inverse function
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accord with social conventions and theoretical or aesthetic grounds.



with nearly the same goodness-of-fit index.6 This gave rise to discussions of scientists’ distinct
practices of explaining experimental data by means of theory- and data-driven methods.7 This sit-
uation provided an occasion to talk about the tenuous relationship between a particular set of data
(or their plots) and a function, for there are several functions that provide equally good fits to the
data. The decision of which function to use had to be made on other grounds such as parsimony,
internal consistency of the domain, or fit with the theory. As with other “cognitive” values, the
origins of intellectual, powerful, and preferred solutions lie in social practices rather than in indi-
vidual minds (Wertsch & Rupert, 1993). Such decisions are based on conventions, not on sets of
absolute criteria. Thus, rather than dwelling on “correct” methods of graphing the results from the
optical experiments, we chose the situation as an occasion to discuss scientists’ purpose and the
relationships between data and theory. What we talked about, then, were scientific practices of
achieving consensus, resolving disputes, and offering evidence.

Open Questions

Before closing we want to point out that our practice perspective also gives rise to new research
questions. Thus, we are not simply interested whether students like Jamie and Miles or the
physics students have the ability to plot their data points and find trends (in fact, they developed
an increasing competence in doing just that). Rather, we are interested to find out how students
transform lumps of soil, observations of plants, or sensations of temperature into various semiotic
expressions that they use as evidence for scientific phenomena. Jamie and Miles participated in a
classroom culture in which the construction of mathematical representations (such as graphs) and
the rhetorical quality of their evidence were valued. Further questions a researcher might ask in
this case are: How does the classroom community support the spreading and wide acceptance of
a new practice (such as graphing?); How is cognition transformed with the adoption of new prac-
tices at the classroom level?; What are the processes by means of which students interpret graphs
produced by other students and construct meaningful understandings of their peers’ research?
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