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SUMMARY 
 

Virtual three-dimensional auditory displays (V3DADs) use digital signal 

processing to deliver sounds (typically through headphones) that seem to originate from 

specific external spatial locations. This set of studies investigates the delivery of 

V3DADs through bone-conduction transducers (BCTs) in addition to conventional 

headphones. Although previous research has shown that spatial separation can be induced 

through BCTs, some additional signal adjustments are required for optimization of 

V3DADs, because of the difference in hearing pathways. The present studies tested a 

bone-conduction adjustment function (BAF) derived from equal-loudness judgments on 

pure tones whose frequencies were spaced one critical band apart. Localization 

performance was assessed through conventional air-conduction headphones (the “air” 

condition), BCTs with only transducer correction (the “unadjusted bone” condition), and 

BCTs with a BAF applied (the “adjusted bone” condition). The results showed that in the 

elevation plane, the BAF was effective in restoring the spectral cues altered by the bone-

conduction pathway. No evidence for increased percept variability or decreased 

lateralization in the bone-conduction conditions was found. These findings indicate that a 

V3DAD can be implemented on a BCT and that a BAF will improve performance, but 

that there is an apparent performance cost that cannot be addressed with BAFs measured 

using the methodology in the present studies. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Background and Impetus 

Virtual three-dimensional auditory displays (V3DADs) apply digital signal 

processing to deliver sounds (typically through headphones) that seem to originate from 

specific external spatial locations. They allow delivery of any sound to any location in the 

horizontal or median plane, located at a fixed short distance external to the listener’s 

head. V3DADs take advantage of the auditory system’s sensitivity to interaural 

difference cues that lead to localization in the horizontal plane (Blauert, 1997) and 

spectral cues that lead to localization in the median plane (Blauert, 1969/1970; Burger, 

1958; Oldfield & Parker, 1984b; Rayleigh, 1907; Roffler & Butler, 1968; Searle, Braida, 

Cuddy, & Davis, 1975) as well as externalization (Blauert, 1997; Wenzel, 1992). 

The application of virtual 3D audio technology in auditory displays has many 

important uses, such as increasing the detectability of radio communication signals 

amidst distracters and noise (e.g., Brungart & Simpson, 2002) and providing orientation 

cues in cases of vision loss (e.g., Walker & Lindsay, 2006). Because V3DADs are 

typically delivered via headphones, the detection and localization of environmental 

sounds can deteriorate because the ears are being covered. This can be a problem when 

spatialized audio and sounds in the environment are both important for the user’s task, 

such as with audio navigation systems like the System for Wearable Audio Navigation 

(“SWAN” (Walker & Lindsay, 2006)), or a tactical environment where a soldier needs to 

hear events occurring around him in combination with radio communications. In addition 

to performance, the level of comfort or confidence that the individual has when his ears 
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are covered may decrease – both sighted and visually impaired users of SWAN have 

reported that they would not use the system outdoors if it covered their ears (Walker, 

Stanley, & Lindsay, 2005). 

These situations would benefit from an alternative to headphones. Because the 

auditory system is also sensitive to pressure waves transmitted through the bones in the 

skull (Békésy, 1960; Kelley, 1937; Tonndorf, 1972), bone-conduction transducers may 

provide an acceptable solution. Bone-conduction transducers (BCTs) leave the ear canal 

and pinna uncovered, which facilitates the detection and localization of environmental 

sounds. Furthermore, BCTs allow the display of auditory information even when 

earplugs are inserted into the ear canal, which cannot be done with headphones. The 

ability to protect hearing while simultaneously delivering information via V3DADs may 

be useful in aviation or tactical environments where loud ambient noise and spatialized 

radio communications could co-occur.  

Although still not widespread, the use of BCTs to deliver sound is not new. 

Special-purpose BCTs have typically been used in clinical audiology settings to assess 

the locus of hearing damage in patients (e.g., Robinson & Shipton, 1982; Small & 

Stapells, 2003). There has also been research seeking to understand the fundamental 

mechanisms of bone-conduction hearing (Békésy, 1960; Freeman, Jean-Yves, & Sohmer, 

2000; Stenfelt, 2006; Stenfelt, Hato, & Good, 2004; Tonndorf, 1966). This research on 

mechanisms has shown that there is a considerable difference between the bone-

conduction pathway and air-conduction pathway, although they share the same end organ 

of the cochlea. 
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Sensitivity to bone-conducted lateralization cues (interaural level differences 

(ILDs) and interaural time differences (ITDs)) is a minimum requirement for 

implementation of virtual 3D audio on BCTs – without this, no changes in localization on 

the horizontal plane can be simulated. Research has shown that bone-conducted interaural 

differences can be detected. Jahn and Tonndorf (1982) were perhaps the first to consider 

lateralization through a pair of BCTs, reporting that the subjective impression of 

lateralization occurred for the authors when ILDs and ITDs were invoked. Kaga, Setou, 

and Nakamura (2001) later measured the ILDs and ITDs at which subjective 

lateralization first occurred for sounds delivered through bone-conduction and air-

conduction transducers. They found that there was not a statistically significant difference 

in the sensitivities to these cues between the bone-conducted sound and air-conducted 

sound. Researchers have also measured ILD-lateralization functions for bone-conduction 

and air-conduction, finding similar functions for bone and air (Stanley & Walker, 2006). 

In another study, Walker, Stanley, Iyer, Simpson, and Brungart (2005) showed that ITDs 

and ILDs implemented through BCTs to separate target speech signal from masker 

speech signals can enhance speech intelligibility with BCTs. Furthermore, people have 

successfully used the SWAN auditory navigation system with BCTs (Walker & Lindsay, 

2005), which guides users to their destination using spatial cues. MacDonald, Henry, and 

Letowski (2006) implemented a virtual 3D audio display on BCTs and regular 

headphones and found similar localization performance in the horizontal plane. In 

addition, others have shown sensitivity to binaural aspects of Bone-Anchored Hearing 

Aids (e.g., Snik, Beyon, van der Pouw, Mylanus, & Cremers, 1998; Snik, Bosman, 

Mylanus, & Cremers, 2004). 
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 Together, these studies suggest that sufficient spatial separation can be induced to 

manipulate an auditory object’s location on the horizontal plane for V3DADs 

implemented on BCTs. However, sufficient spatial separation does not mean that they are 

just as effective. In general, differences in the spatial audio capabilities between air 

conduction and bone conduction would not be surprising, given the difference in 

pathways that sound travels for air-conduction and bone-conduction hearing. Schonstein, 

Ferré, and Katz (2008) considered localization performance on V3DADs with equalized 

BCTs relative to equalized headphones for one participant in the horizontal and median 

planes, and found a decrease all performance metrics with the BCTs. Furthermore, 

Walker and colleagues (2005) found that although spatial separation improved speech 

intelligibility, the intelligibility was consistently lower for bone than air. In addition, 

Stanley and Walker’s (2006) lateralization study did not produce perceived lateralization 

greater than 75 percent. Thus, there could be differences in the perceived lateralization 

between the pathways when interaural differences corresponding to greater lateralization 

are tested. MacDonald, Henry, and Letowski (2006) used a restricted number of 

locations, ambient masking noise, and a band-pass filter that cut out frequencies above 

5000 Hz, all of which may have prevented revealing differences in auditory localization 

between the headphones and BCTs. Limitations in the maximum eccentricity on the 

horizontal plane for BCTs are likely, given the lower interaural attenuation between the 

ears for bone conduction than for air conduction (Dean, 1930; Hallmo, Sundby, & Mair, 

1992; Hurley & Berger, 1970; Nolan & Lyon, 1981; Snyder, 1973). 

In addition to remaining questions about localization in the horizontal plane, little 

information is available on how localization in the elevation plane and externalization is 
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altered when delivering V3DADs implemented on BCTs. Given the differences in 

hearing pathways, there are also likely to be large inaccuracies in the spectral cues when 

using BCTs to implement V3DADs. Because of the role of spectral cues in median plane 

localization and externalization, these inaccuracies are likely to result in limited or 

inaccurate elevation, front/back discrimination, and externalization of auditory objects in 

V3DADs. The study by Schonstein and colleagues (2008) showed data consistent with 

this prediction. Given these differences in spatial audio between bone conduction and air 

conduction, some adjustments to the signal for the bone-conduction pathway are required 

to test the maximum effectiveness of BCTs in V3DADs. 

Before discussing adjustments for V3DADs, the methodology for creating 

V3DADs will first be briefly reviewed. Following seminal work showing the ability to 

simulate externalized sound sources over headphones (Doll, Gerth, Engleman, & Folds, 

1986), researchers showed that signal processing filters could be used to produce 

V3DADs through air conduction (e.g., Wightman & Kistler, 1989a, 1989b). Head-related 

transfer functions (HRTFs) produce V3DADs by providing a filter that any sound can be 

sent through so that the sound seems to come from a specific location outside of the head. 

Creating an HRTF consists of several steps. First, a tiny microphone is inserted into a 

person’s ear canal to record the response to a broadband sound emitted from specific 

locations in the free field. Then the Fourier transform of this response is divided by the 

Fourier transform of the signal, which creates the HRTF. The HRTF characterizes all the 

primary cues for localization - the spectral filtering achieved by the pinna, as well as 

interaural differences in time and intensity. 

The critical issue remaining for V3DADs on BCTs is how the sound could be 
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adjusted to optimize HRTFs for BCTs. This issue is the focus of the studies presented 

here. There is no way to measure HRTFs for bone conduction in an analogous way to 

how they are measured for air conduction, because spatial audio does not occur naturally 

through bone conduction. It is possible, however, to understand how to alter a given bone 

conduction signal so that it sounds like an air-conduction signal. One result of 

understanding this relationship would be a filter specifying amplitude shift values across 

frequencies that equate the two signals. Such a function could then be used to adapt the 

spectral features of the HRTFs so that they are more suitable for use with BCTs. I will 

call this function a “bone-adjustment function,” or BAF. It is hypothesized that a sound 

could be passed through an HRTF and BAF, then presented via BCTs, causing the sound 

source to be localized at a particular point in space outside the listener’s head. The 

current studies present a methodology for measuring, implementing, and assessing the 

efficacy of BAFs. 

1.2. Overview of Studies 

The first study described in this document (Study 1) measures BAFs through a 

loudness-matching paradigm between bone-conduction and air-conduction sounds. This 

method of defining BAFs includes the frequency response of the transducer, which can 

be subtracted from the BAF after the measurement. In Study 2, the efficacy of the BAFs 

are tested by measuring localization ability with V3DADs through air (the “air” 

condition), V3DADs through bone with only a transducer correction applied (the 

“unadjusted bone” condition), and V3DADs through bone with a BAF applied (the 

“adjusted bone” condition). 



 7 

1.3. Theoretical Implications of Proposed Studies 

In a preliminary exam paper by the author, a “Limited-Fidelity Model of Bone-

Conducted Spatial Audio” was described, based on the aforementioned and other 

literature. That model predicts results of the studies described in this document, and these 

studies further inform the model. In the context of this research, fidelity is defined as the 

extent to which simulated spatial audio implemented on BCTs can match the perceptual 

saliency and localization performance shown with simulated spatial audio delivered 

through headphones. This model asserts the feasibility of using BCTs to deliver spatial 

audio while also highlighting factors limiting the ultimate fidelity. The Limited-Fidelity 

Model of Bone-Conducted Spatial Audio consists of four components:  

A) Theory of leaky dichotic bone-conduction hearing: there is a greater degree of 

binaural separation possible through bone conduction than is typically thought 

(i.e., none), but there is a maximum limit that is less than the separation possible 

through air conduction.  

B) Air-conduction filters are ill-suited for bone conduction pathway: Air-conduction 

filters do not allow the best possible performance to be gained from BCTs. 

C) Measurable pathway: the bone-conduction pathway is measurable using a variety 

of methods, so that adjustments can be made to the air-conduction filters. 

D) Imperfect filter effectiveness: Despite an ability to measure adjustment filters, the 

maximum effectiveness of the filters will be limited by several factors inherent to 

the bone-conduction pathway. These include inconsistency within a person 

because of sensitivity to movements, transducer placement, cardiac system 

changes, and respiratory system changes, variability in the resulting cochlear 
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stimulus across people, co-occurring independent bone-conduction hearing 

mechanisms, antiresonances, and the “leaky” aspect of dichotic stimulation. 

1.4. Major Methodological Decisions 

1.4.1. Adjustment Function Methodology 

A variety of methods can be used to understand the relationship between bone-

conducted and air-conducted sounds. One method is to measure the relationship 

behaviorally through a bone-to-air matching paradigm. Previous work aimed to test the 

feasibility of using the bone-to-air cancellation paradigm to measure BAFs (Stanley, 

2006). In this paradigm pioneered by Békésy (Békésy, 1932 as cited in Békésy, 1960), a 

participant adjusts the phase and amplitude of a signal (e.g., air-conducted) in one ear so 

that it cancels out the other signal (e.g., bone-conducted) in the same ear, thus producing 

silence (or at least a significant reduction in volume). In the Stanley (2006) work, the 

amplitude and phase shifts required at a particular frequency to reach this cancellation 

were used to define a “bone-to-air shift”. The eventual goal was to establish a set of 

bone-to-air shifts for a large number of frequencies that could then be combined to build 

a BAF. Stanley (2006) measured bone-to-air amplitude and phase shifts at three 

frequencies. The data provided a preliminary (sparse) set of bone-to-air amplitude shifts 

that could be used to build BAFs.  

There were difficulties associated with the cancellation paradigm in the Stanley 

(2006) work. These included sensitivity of cancellation to head movement, variability 

between people in the degree of cancellation achieved, and the length of time required to 

complete the task. Each session consisted of 80 trials and took between 45 minutes and 2 

hours to complete. In addition to the difficulties associated with the method, the phase-
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shift data differed greatly between participants. The amplitude data, however, did 

produce stable results. Consideration of binaural synthesis literature suggests that 

listeners are not sensitive to aspects of the phase spectrum within a transfer function 

applied to a single ear (Kistler & Wightman, 1992; Kulkarni, Isabelle, & Colburn, 2001; 

Wightman & Kistler, 1997). Phase variability between ears, of course, affects the ITD 

cue, which would have an effect on localization.  

Together, these findings suggested that a loudness-matching paradigm devoid of 

any phase adjustments may still be useful for building BAFs. The studies described in 

this document tested that hypothesis. The present studies measured BAFs using a 

method-of-adjustment equal-loudness paradigm, which provided an efficient way of 

obtaining judgments for 33 frequencies at each ear, with a wide range of loudness levels 

available to the participant. 

 One study has investigated the point of equal loudness for bone- and air-

conducted stimuli (Stenfelt & Håkansson, 2002). Stenfelt and Håkansson had listeners 

adjust the loudness of a bone-conducted tone until it matched the loudness of an air-

conducted tone. This was done at six frequencies ranging from 250 Hz to 4 kHz, and at 

six levels ranging from 30 dB to 80 dB HL. These data are not sufficient for developing a 

BAF, however, because measuring equal loudness for a BAF requires testing more 

frequencies, including those above 4 kHz. 

1.4.2. Selection of HRTFs 

As discussed above, HRTFs can be measured for an individual in order to 

characterize the spectral filtering and interaural differences that occurs for a free-field 

sound source. Although individualized measurement gives the highest fidelity V3DAD, it 
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requires considerable technical expertise and equipment that were not available in the 

Sonification Lab. For an initial study considering the effectiveness of bone-conducted 

spatial audio and adjustment filters, a more efficient method was better suited. 

Several approaches have been taken to avoid having to measure HRTFs for each 

individual participant but retain localization performance. These approaches include 

finding a “generalized” HRTF  (e.g., Møller, Sørensen, Jensen, & Hammershøi, 1996), 

and selecting a “best-fit” HRTF from a public database of HRTFs, based on objective 

(Ahmad, Stanney, & Fouad, 2008) and subjective (Seeber & Fastl, 2003) selection 

routines. Recent work has identified specific acoustic characteristics of HRTFs that 

govern how well an HRTF works for an individual. Middlebrooks (Middlebrooks, 1999a; 

Middlebrooks, Makous, & Green, 1989) observed that the position of spectral features 

along the frequency axis varies between listeners for directional components of HRTFs, 

called “directional transfer functions” (DTFs). DTFs are a variant of HRTFs; more details 

on DTFs can be found in Section 3.1.3. Middlebrooks (Middlebrooks, 1999a; 

Middlebrooks, et al., 1989) further showed that the position of spectral features can be 

aligned between participants by applying frequency scaling to the DTFs, and that the 

scaling factor was related to size of the participants’ head and external ears. In addition to 

showing differences in these acoustic features between individuals, Middlebrooks 

(1999b; 2000) showed that a scaling factor can be applied to non-individualized DTFs to 

improve virtual localization for a particular listener. Furthermore, Middlebrooks and 

colleagues (2000) showed that applying a scaling factor determined by perceptual 

judgments or by anthropometry could typically reduce quadrant errors (errors greater 

than 90 degrees in the vertical or front/back dimension) by half, relative to non-
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individualized DTFs. In some cases, the number of errors even approached that of 

performance measured with individualized DTFs. Middlebrooks’ customization routine 

(Middlebrooks, 1999a, 1999b; Middlebrooks, et al., 2000) was used in the present 

studies. 

1.4.3. Measurement of Localization Judgments 

Investigators measuring localization abilities with V3DADs have used many 

different methods for their listeners to indicate where in space they hear a sound in both 

the horizontal and median planes. These include: pointing with a wand that has an 

electromagnetic sensor on its tip (Brungart, Rabinowitz, & Durlach, 2000); pointing with 

their hand and taking a picture of its location in two planes (Oldfield & Parker, 1984a); 

pointing with their nose and monitoring the head’s location with a head tracker (Makous 

& Middlebrooks, 1990); verbal report of spherical coordinates (Wightman & Kistler, 

1989b); placing a position sensor at a location on a manikin head that corresponds to the 

perceived location relative to the listener’s head (Gilkey, Good, Ericson, Brinkman, & 

Stewart, 1995); and indicating location on a computer screen displaying a two 

dimensional model of a head (MacDonald, et al., 2006; Møller, et al., 1996). Each of 

these methods has its own unique advantages and disadvantages, and all have some 

amount of error. 

The present studies had participants indicate the position of a sound source with a 

computer mouse by clicking on a set of two-dimensional drawings of a head on a 

computer screen. Further details about this response method are available in Section 

3.1.2. This method avoids the slowness of verbal response and the technical and financial 

resources required for response systems involving sensors. This method borrows 
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techniques similar to Møller (1996) and MacDonald (2006), and uses head models 

adapted from Middlebrooks (2000). Pilot testing ensured that participants could 

understand and use this interface after minimal practice. 
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CHAPTER 2 
 

STUDY 1 - THE BONE-CONDUCTION ADJUSTMENT FILTER 
 

2.1. Method 

2.1.1. Participants 

The participants were ten paid participants from the graduate and undergraduate 

community of the Georgia Institute of Technology (six male, four female; mean age = 

26.2; age range = 22 to 30). They were required to have normal hearing (sensitivity to 20 

dB HL pure tones), as tested by an audiometer.  

2.1.2. Apparatus 

The air-conducted stimuli were presented through Etymotic ER-1 insert 

headphones (see Figure 1), which have a diffuse-field frequency response (see Appendix 

D). These insert headphones avoid the variability in stimulation that occurs with earbuds, 

avoid the interference with the mastoid area that occurs with supraaural and circumaural 

headphones, and have been used in other studies for delivering V3DADs (e.g., Carlile & 

Best, 2002). Bone-conducted stimuli were delivered through a Teac HP-F100 Filltune 

bone conduction transducer (see Figure 2). This is a newly released transducer that is 

built for everyday use by the general public for applications such as listening to music. It 

was used rather than the more common RadioEar B-71 built for audiometry because of its 

relatively flat frequency response that extends up to 18 kHz (see Figure 3) compared to 

the B-71’s steep drop-off at 4 kHz and maximum frequency of 10 kHz. The Teac 

transducer was applied to the mastoid location of the head directly behind the external 

ear. 
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Figure 1. Photograph of Etymotic ER-1 insert headphones used in the present studies. 
 
 
 

 
Figure 2. Photograph of Teac HP-F100 “Filltune” bone-conduction transducers used in 
the present studies. 
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Figure 3. Frequency response of Teac Filltune bone conduction transducer, as measured 
in Sonification Lab by Bruel & Kjaer PULSE system analyzer and Bruel & Kjaer Type 
4930 Artificial Mastoid. The input sent through the bone conduction transducer was a 
swept sine wave. This frequency response was measured for each transducer (left and 
right), and averaged across them. 
 
 
 

Participants used a computer keyboard and mouse to indicate their responses and 

receive supporting experiment information through the visual display. Stimuli delivery, 

response collection, stimuli creation, and data analysis were all done via scripts written in 

Matlab. 

 Auditory stimuli were sent out digitally through an Apple iMac computer (2 GHz 

Intel Core 2 Duo) to an M-Audio Firewire 410 external sound card. The air conduction 

channels were sent through a Furman HA-6AB headphone amplifier before being sent to 

the headphones. The bone-conducted stimuli were sent from the line outputs of the sound 

card directly into the battery-powered amplifier that comes with the Teac HP-F100 

Filltune bone conduction transducers, which passed the signal on to the transducers. 

During measurements of the distortion point of the bone-conduction transducers (which 

will be described below), a dependence of levels (especially second harmonics) on 

battery power was observed. Specifically, fundamental levels began to decrease and the 
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relative level of the second harmonic began to increase after the battery level dropped 

below a specific level on a voltmeter. Therefore, all batteries were tested before each 

session began and not used if they were below this level. 

 Before each session began and the participant arrived, the experimenter measured 

the output from the line level of the sound card (for the bone conditions) and the output 

from the headphone amplifier (for air conditions) with a voltmeter. This value was 

monitored for consistency to ensure that no changes had been made in the levels. After 

the participant arrived, the experimenter mounted the bone-conduction transducer onto 

the participant, and the participant inserted the headphones. Before the main task of the 

experiment began, a test sound was played through the left and right transducer for both 

air and bone. This ensured that the devices were mounted properly (i.e., the channels 

were not reversed) and were functioning correctly. After the sensitivity to headphone 

insertion depth was realized, pictures of each ear and its surrounding area were taken 

with the headphones inserted and BCTs mounted, before each session began. 

 Loudness was matched between bone and air using the interface shown in Figure 4. 

The participant commenced each trial by pressing the “Play Sound” button. This initiated 

a loop consisting of a monaural tone being played through the air-conduction 

headphones, 500 milliseconds of silence, and then an ipsilateral monaural tone being 

played through the bone-conduction transducer. This loop continued while the participant 

adjusted the slider, until the participant pressed the “Submit Value” button (see Figure 4). 

The bone-conducted (test) tone started at a soft level, and the participant adjusted its 

volume by moving the slider with the mouse. Pressing the “Submit Value” button 

recorded the amplitude value of the test tone and advanced parameters to the next pure 
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tone to match, which was again be initiated by the “Play Sound” button. 

 
 

 
Figure 4. Interface used for making equal-loudness matches, using the method of 
adjustment. 

 

2.1.3. Stimuli 

 Auditory stimuli were delivered through a single bone-conduction or air-

conduction transducer on the same side of the head during any given trial. The stimuli 

were pure tones at the 33 critical band centers lying between 250 and 16500 Hz (the 

bandpass limits of my final virtual 3D audio targets). The critical bandwidths were 

calculated using a combination of equations. The critical bandwidths were calculated 

using the equation provided in Glasberg and Moore (1990), 

ERBN = 24.7(4.37F+1), 

where ERBN = the normal equivalent rectangular bandwidth, and F = the center 

frequency. These bandwidths were used to determine the upper and lower bound of each 
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critical band, and then the center for each critical band was computed using the geometric 

mean, 

 
Mgeometric =

! 

U *L , 
 

where Mgeometric = the geometric mean, U = the upper bound of the critical band and L = 

the lower bound of the critical band. The upper bound, lower bound, and centers of 

resulting from these computations can be seen in Table 1. 
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Table 1 

Lower bound, center, and upper bound of critical bands calculated based on Glasberg 

and Moore (1990). Pure tones for the equal loudness judgments were at each of the 

center frequency values. 

Lower (Hz) Center (Hz) Upper (Hz) 
14789 15621 16500 
13253 14000 14789 
11874 12545 13253 
10637 11238 11874 
9525 10066 10637 
8528 9013 9525 
7632 8067 8528 
6828 7219 7632 
6106 6457 6828 
5458 5773 6106 
4877 5159 5458 
4354 4608 4877 
3886 4113 4354 
3465 3669 3886 
3087 3271 3465 
2748 2913 3087 
2444 2592 2748 
2171 2303 2444 
1925 2044 2171 
1705 1812 1925 
1508 1603 1705 
1330 1416 1508 
1171 1248 1330 
1028 1097 1171 
900 962 1028 
784 840 900 
681 731 784 
588 633 681 
505 545 588 
430 466 505 
362 395 430 
302 331 362 
248 273 302 
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The stimuli had the same duration and amplitude envelope as in the subsequent 

virtual audio localization test (Study 2): 250 milliseconds long, with 10-millisecond 

raised-cosine onset and offset ramps. 

The air-conducted stimuli were delivered at a maximum narrowband level of 75 

dB SPL. The standardized acoustic couplers for measuring levels coming out of the ER-1 

insert headphones were not available. Homemade versions of such couplers were built 

and attempted for use, but resulted in measurements that were grossly inaccurate (as 

indicated by the author’s perceptual listening tests and output calculations based on 

voltage sensitivity). Thus, sensitivity specifications measured at the factory on the exact 

pair of headphones used in the study were utilized to compute the sound pressure level 

output. The sensitivity values give the output sound pressure level for a given input 

voltage into the system, at a specific frequency. The transducer’s calibration charts 

showed that given an input of 320 millivolts, the output at 2500 Hz was 107 dB SPL 

(2500 Hz was the peak of the diffuse-field frequency response). Because of the 

proportionality property of a linear system, a logarithmic reduction in voltage will result 

in an equal logarithmic reduction in output. A 32 decibel reduction in transducer output 

(down from 107 dB) was achieved by a 32 decibel reduction in input voltage, which 

equaled 8 millivolts (20*log10(320/8) = 32 dB), producing a peak output of 75 dB SPL at 

2.5 kHz. The SPL measured across frequency (a broadband measurement) would be 

lower, given the diffuse-field frequency response of the headphones used in this study. 

The value of 75 dB was chosen so that the weaker frequencies (as defined by the diffuse-

field response) were still audible, yet the stronger frequencies were still in safe ranges, 



 21 

while leaving space for the bone-conducted tone to be adjusted to be louder than the air-

conduction tone. 

There was a minimum (lower bound) and maximum (upper bound) level to which 

the bone-conducted stimuli could be adjusted. The lower-bound bone-conduction levels 

were determined by pilot testing, set to a level that was audible but much softer than the 

test stimulus. The upper-bound bone-conduction levels were initially determined by 

piloting, set to a level that was noticeably louder than the reference stimulus while still at 

a comfortable level. These upper-bound values had to be adjusted because of distortion 

that occurred in the bone-conduction transducer – harmonics above the pure tones could 

be heard, which would effect the loudness adjustments. The point of unacceptable 

distortion was operationally defined as the highest adjustment point at which the highest 

amplitude harmonic was greater than or equal to 30 dB down from the fundamental. 

These values were determined using a Bruel & Kjaer Type 4930 Artificial Mastoid 

coupled to a Bruel & Kjaer PULSE system analyzer, using one-third octave band 

analysis. The maximum allowable adjustment level was taken as the minimum 

adjustment level causing the point of unacceptable distortion, taken across five 

measurements for each transducer. The upper-bound bone-conduction adjustment level 

was set to the piloted value or the distortion point, whichever was the lowest level. 

2.1.4. Procedure 

 Participants ran themselves through trials to match the loudness of the bone-

conducted tone to the air-conducted tone using the aforementioned software apparatus.  

The ear that the stimulus was delivered to was randomly selected, and the order of 

frequencies administered for this ear was randomized. After all frequencies in one ear 
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were complete, the order of frequencies was randomized again. The total study time 

(including procedures described below) was about 75 minutes. 

 At the higher frequencies, sometimes the participants could not hear the reference 

tone. In this case, the participants were instructed to nudge the slider just from the 

minimum, and submit this value. The nudge was required because the slider had to be 

moved for the value to be submitted, to prevent accidental submission. For two 

participants the 14 kHz tone was inaudible in one or both ears, and for three participants 

the 15.6 kHz tone was inaudible in one or both ears. 

 For the first few participants, some of the bone-conducted upper-bound 

adjustment values were not high enough to achieve equal loudness, and participants had 

to come back to re-do their adjustments, with a higher upper bound. The participants’ 

equal-loudness adjustments had to be greater than 3 dB attenuation from the top for the 

adjustment to be deemed acceptable. Acceptability of adjustments was determined after 

the session terminated.  

After the equal-loudness points used to form the BAFs were measured, 

participants made equal-loudness judgments that would later be used to determine the 

volume of the unadjusted bone condition. The air-conducted stimulus was a 250-

millisecond broadband noise bandpassed between 250 and 16500 Hz (the same frequency 

cutoffs as the virtual audio localization study); the bone-conducted stimulus was identical 

but was also filtered by the inverse transducer frequency response (as described in 

Section 3.1.3). The same interface shown in Figure 4 was used and again the air-

conducted noise was always the reference stimulus. 
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2.1.5. Customization of DTFs 

After the loudness matches were completed, measurements were taken to 

determine the participant’s appropriate scale factor, using the anthropometric procedure 

described by Middlebrooks (1999a). Middlebrooks (2000) found that a person’s head 

width and pinna height were good predictors of a person’s appropriate scale factor (r = 

.82). The head width was measured with a set of calipers, just in front of the tragus (see 

Figure 5). The pinna height was measured with a set of calipers, extending from the inter-

tragal notch to the rim of the helix (see Figure 5). These values were then entered into the 

equation provided by Middlebrooks (1999a) to determine the appropriate scale factor: 

 log2(scale factor) = 0.340*log2(pinnameas / pinnaref)  
 +  0.527* log2(headmeas /headref) 
 
where  pinnameas and headmeas  are the measured pinna height and head width of the 

participant, and pinnaref and headref are the pinna height and the head width of the person 

whose DTFs were used in this study (“medium” (S44) DTFs from Middlebrooks (2000)). 

The anthropometric data and calculated scale factors can be seen in Table 2. 
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Figure 5. Ear anatomy, showing landmark features used for anthropometric 
measurements: tragus, helix, and inter-tragal notch. Landmarks determined based on 
Middlebrooks (1999a). 
 
 
 
Table 2 

Anthropometric data for the ten participants in these studies and for the DTF “base” 

participant. 

Subject   
Pinna Height 

(mm) 

Head 
Width 
(mm) 

Scale 
Factor 

1 44 126 100.13 
2 45 125 100.47 
3 37 125 94.03 
4 45 127 101.31 
5 46 135 105.41 
6 45 135 104.63 
7 46 143 108.65 
8 50 134 108.00 
9 50 146 112.99 

10 56 139 114.41 
Base 40.7 132 100.00 
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2.1.6. Building Bone-Conduction Adjustment Filters 

After Study 1 was completed, the data were used to build the BAF used in Study 

2. Using the equal-loudness points measured at each frequency, 1025 values 

(corresponding to a 2048 tap filter) were interpolated to form a high-resolution BAF 

extending from 0 Hz to 22.05 kHz, as a frequency-domain filter (see Figure 6). The 

amplitude of the BAF was ramped up from zero at frequencies between 0 Hz and 223 Hz 

and down to zero at frequencies between 17959 and 22,050 Hz. The 223 Hz and 17959 

Hz values were chosen because they were one sixth octave away from the band limits of 

the final stimuli (250 and 16500 Hz). Filters were built for each ear, and applied 

separately to each ear. The filters were also built and applied separately for each 

individual, thus creating individualized BAFs. Further details on implementation of the 

BAF can be found in Section 3.1.3. 

 

 
Figure 6. Sample equal-loudness points (measured in Study 1), with 1025 interpolated 
points to form frequency-domain BAF. This filter was applied to stimuli in Study 2. 
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2.2. Results 

Appendix A shows the BAF and equal loudness points for each participant (and 

each ear) in separate plots. Figure 7 shows the BAFs of all participants, averaged across 

ears. Figure 7 also shows the average BAF (the BAF averaged across participants, and 

shifted upwards by 15 dB for graphical clarity) and the transducer frequency response 

(shifted by 5 dB for graphical clarity). Looking at the raw BAFs alone, they appear to be 

quite variable, but there are a few consistent trends. First, there is a global decrease after 

about 5 kHz. There are also some grouping of peaks around 750 Hz and 3.5 kHz, and 

some grouping of dips around 7 kHz. This is consistent with the shape of the average 

BAF. 

 
 

 
Figure 7. Bone-conduction adjustment functions (BAFs) averaged across ears, for each 
participant. Also shown is the BAF averaged across all participants (indicated by the 
“Avg.” series), and the transducer frequency response (“Transd.” series). For graphical 
clarity, the average BAF was shifted upwards by 15 dB and the transducer frequency 
response was shifted upwards by 5 dB. 
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The equal-loudness adjustments were done with an un-equalized bone-conduction 

transducer, and thus include the frequency response of the transducer. Figure 8 shows the 

individual BAFs and average BAF (again shifted upwards by 15 dB  for graphical clarity) 

with the BCT frequency response removed from the BAF. The transducer frequency 

response was removed by subtracting the BCT frequency response averaged across 

transducers from the BAF averaged across ears. Figure 8 shows that with the transducer 

response removed, there are global peaks at about 750 Hz and 3 kHz as well as many 

local peaks and dips between 500 Hz and 4kHz, and then some again after 10 kHz. There 

is little variation in the average BAF after about 6.5 kHz, and the individual BAFs always 

have the strongest relative shape changes below 7 kHz. It should be kept in mind that at 

the highest two frequencies, the low amplitude values in some BAFs are caused by the 

participant not hearing the initial tone and therefore making the lowest amplitude value 

judgment (as described in Section 2.1.4). 
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Figure 8. Bone-conduction adjustment functions (BAFs) averaged across ears for all 
participants, with BCT frequency response (averaged across transducers) removed. The 
“Avg.” series depicts the BAF averaged across all participants, and was linearly shifted 
by 15 dB to be above individual BAFs for graphical clarity. 
 
 
 
 During the equal-loudness procedure that was used to form the BAF, participants 

indicated that they would sometimes hear one of the tones in the middle or opposite side 

of the head as the other tone. This was true despite verifications showing that the 

transducer on the same side of the head were active, and originated from the bone-

conduction tone. 
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CHAPTER 3 
 

STUDY 2 - LOCALIZATION EXPERIMENT 
 

3.1. Method 

3.1.1. Participants  

The same participants used in Study 1 were used in Study 2. 

3.1.2. Apparatus 

The same audio delivery equipment (computer, transducers, sound cards, etc) and 

software platform (MATLAB) used in Study 1 were used in Study 2. In addition, the 

voltage check and left/right sound check conducted at the beginning of Study 1 was also 

conducted at the beginning of every session for Study 2. For the last four participants that 

participated in these studies, pictures of the ear were also taken before each session began 

in Study 2, to monitor headphone insertion depth. 

Responses in the virtual audio localization procedure were made by indicating the 

position of a sound source with a mouse, by clicking on a location relative to a set of two-

dimensional models of a head on a computer screen. To allow a measurement of 

localization in both planes, there were models on the screen for each plane of localization 

– a “top view” and “side view” of a model head. The response for each plane was split up 

into two discrete judgments. The first judgment was the azimuth judgment (labeled “Top 

View” for the participant), as seen in Figure 9. The azimuth judgment screen displayed 

for 500 milliseconds before the initial stimulus presentation occurred. The participants 

made the azimuth judgment by clicking on the response screen, and pressed the space bar 

to submit the response. After the first judgment was submitted, the elevation judgment 

screen (see Figure 10) displayed for 500 milliseconds, and the same stimulus was played 
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again. The elevation response was again submitted with the press of the space bar, which 

marked the end of the trial. For the elevation judgment, the participants were instructed to 

make the judgment as if they had turned their head to face the sound – this was required 

for the representation to make sense for sounds not delivered in the median plane. The 

azimuth task was done first so that the participant could focus solely on elevation when 

facing the target for the elevation judgment, and not get confused about the front/back 

location. Participants did occasionally report that there was some cognitive interference 

between the angle of the vector in the first and second judgment. 

 
 

 
Figure 9. Audio localization response screen. First response - azimuth judgment. 
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Figure 10. Audio localization response screen. Second response - elevation judgment. 
For this judgment, participants were instructed to make the judgment as if they had 
turned their head to face the sound. 
 
 

At the end of each run, a screen appeared in order to assess the participant’s 

overall impression of the sounds, the goal being to measure general aspects not captured 

in the response screen that was administered on every trial. This screen asked for ratings 

regarding two subjective sound quality aspects of the sounds just heard: externalization 

and diffuseness (see Figure 11).  
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Figure 11. Subjective response screen. Requests rating of externalization and diffuseness 
at end of every run. Blue markers are sample judgments, and did not appear on the screen 
until the participant clicked on the scale.  
 
 

3.1.3. Stimuli 

Virtual Audio Localization Input Stimuli 

The stimuli consisted of three 250-millisecond Gaussian noise bursts with 10-

millisecond raised-cosine onset and offset ramps, separated by 300 milliseconds of 

silence. Pilot testing determined that having more than one pulse assisted in the 

localization judgments. Although all stimuli were broadband noise bursts, the specific 

magnitude spectrum of the noise varied randomly from trial to trial, to prevent listeners 

from becoming familiar with spectral characteristics of any given stimulus (as is 

traditionally done in virtual localization research - see Langendijk & Bronkhorst, 2002; 

Middlebrooks, 1999b; Wightman & Kistler, 1989b). Air-conducted stimuli were 

amplified at the same level as the air-conducted stimuli in Study 1. Based on the shape of 
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the diffuse field response and a peak of 75 dB at 2500 Hz, the broadband level is 

estimated to be 65 dB SPL. The bone-conducted stimuli were matched to this level via 

the bone-conduction adjustment function.  

Filtering and Equalization 

 
 Table 3 shows the filters applied to test different conditions tested in Study 2. Table 

3 shows that the spatial audio filters (the DTFs) were applied in every condition. The 

headphones used for the air condition had a built-in diffuse-field response, the adjusted 

bone condition had no transducer correction, and the unadjusted bone condition had a 

filter representing the inverse of the BCT’s frequency response applied. The BAF was 

only applied in the adjusted bone condition. Table 3 also shows that all conditions 

included a 250 Hz to 16.5 kHz band-pass filter. This avoided having the very low and 

high frequencies in the stimuli, where filtering artifacts can occur (Wightman & Kistler, 

1989b). It also ensured that frequencies outside the range of the BCT would not be used 

(see Figure 2). Removing spectral content above 16.5 kHz should not effect localization 

because there are not any important spectral cues for localization above 16 kHz. 

Specifically, up-down spectral cues are primarily located in the 6-12 kHz band, and 

front/back cues in the 8-16 kHz band (Langendijk & Bronkhorst, 2002).  
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Table 3 
 
Filtering applied for each condition in this study. 
 

Condition 
Directional 

Transfer 
Function (DTF) 

Transducer 
Correction 

Bone-conduction 
Adjustment Filter 

Bandpass 
Filter 

Air (baseline) √ Built-in 
Diffuse -- √ 

Adjusted Bone √ None √ √ 

Unadjusted Bone √ 

BCT 
Inverse 

Frequency 
Response 

-- √ 

 
 
 
   

 The spatial audio filters applied for this experiment followed the previously 

described methods of Middlebrooks (Middlebrooks, 1999a, 1999b; Middlebrooks, et al., 

2000), using only the components specific to sound-source location (DTFs), without the 

spectral content common to all locations. The component common to all locations is 

calculated by averaging the sound pressure across all locations (via root-mean-square), 

for each frequency in the digital filter (Middlebrooks, 1999a). The DTF is then computed 

by dividing the HRTF for each location by the common component. The common 

component removed by this process is added back in to the signal by use of the diffuse-

field response of the headphones. Thus, DTFs provide a solution that avoids having to 

measure individualized headphone-to-eardrum transfer functions (Middlebrooks, 1999b). 

The “medium” (S44) base DTFs used in Middlebrooks (2000) were obtained from the 

author and were used in this study. These DTFs were frequency-scaled for an individual 
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participant via the anthropometric customization procedure described in Section 2.1.5.  

 Similar to Wightman (1989b), 36 virtual audio sound source locations were chosen 

from the full set of DTF locations. The 36 locations were chosen so that the full range of 

azimuths and elevations would be represented. These locations were drawn from a set 

that was equally distributed (in spherical space) across 360° of azimuth and -70 to +90° 

in elevation. The locations were chosen in a proportional manner, such that the 

proportion of locations in each location category in the sample drawn equaled the 

proportion in the population of locations available in the full set of DTF locations. The 

location categories were the conjunction of low, middle, and high elevations with front, 

back, and side azimuths, as used in Wightman (1989b). The side locations were evenly 

split between left and right. The locations were randomly drawn once, and all participants 

experienced the same locations in all sessions. The locations used in this study can be 

seen in Table 4; a visualization of the locations can be seen in Figure 12. 
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Table 4 

Locations used for virtual audio localization study, and their spatial classifications. 

Azimuth (°) Elevation (°) Classification 
-21 -20 front-mid 
-30 -50 front-low 
-40 -60 front-low 
-40 10 front-mid 
42 -20 front-mid 
-34 30 front-mid 
-22 30 front-mid 
0 0 front-mid 

13 40 front-high 
-20 60 front-high 

-160 -41 back-low 
160 -41 back-low 
-135 -11 back-mid 
-140 9 back-mid 
-180 -11 back-mid 
-150 19 back-mid 
170 19 back-mid 
-138 39 back-high 
165 69 back-high 
-135 49 back-high 
-90 -40 side-low (L) 

-103 -21 side-mid (L) 
-74 20 side-mid (L) 

-110 9 side-mid (L) 
-70 10 side-mid (L) 
-53 -20 side-mid (L) 
-90 69 side-high (L) 

-124 49 side-high (L) 
120 -50 side-low (R) 
64 -20 side-mid (R) 
116 -1 side-mid (R) 
80 10 side-mid (R) 
50 10 side-mid (R) 
74 -20 side-mid (R) 
120 69 side-high (R) 
101 49 side-high (R) 
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Figure 12. Visualization of locations used for virtual audio localization study. 
 
 
 
  The filters shown in Table 3 were applied using a system of cascading filters 

applied via frequency-domain multiplication. A simplified schematic can be seen in 

Figure 13, and details of the signal processing can be found in Appendix B. First, 500 

milliseconds of Gaussian noise was generated. This noise was then filtered by the 

frequency-scaled DTFs, using frequency-domain multiplication. This output was then 

normalized so that it had a maximum value of one. What happened to the signal next 

depended on the condition of the stimuli being generated. 

 For the adjusted bone condition, each channel of the DTF filtering output was 

filtered by a linear-phase BAF. The BAF was also windowed in the time domain (with a 

Hamming window). Filtering was again achieved by multiplication in the frequency 
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domain. The ends of the resulting time-domain signal were then trimmed to remove the 

remnants of the filter. 

 For the unadjusted bone condition, the DTF filtering output was filtered by the 

inverse of the BCT frequency response measured in the Sonification Lab (see Figure 3). 

The frequency response was measured separately for each transducer (left and right), and 

applied to the appropriate channel in the filtering process. The frequency response was 

converted to a minimum phase version and windowed in the time domain with the last 

half of a Hanning window before the inverse was computed. Filtering was again 

conducted by multiplication in the frequency domain. The filtered signal was truncated to 

the length of the original input signal. After this was done, the amplitude of the time-

domain filtered signal was multiplied by the adjustment value determined in the 

unadjusted bone equal-loudness trials. 

 The output from the DTF filtering (for the air condition), BAF filtering (for the 

adjusted bone condition), or inverse transducer response (for the unadjusted bone 

condition) was then bandpass filtered with a 4-pole butterworth filter. After this filtering, 

the gain that was caused by the bandpass filtering was removed. 

 After the bandpass filtering was complete, the final time-domain preparations were 

done. First, the signal was truncated to 250 milliseconds. Then a raised-cosine window 

was applied to the first and last 10 milliseconds of the signal. Once the stimulus burst was 

in its final form, it was appended with 300 milliseconds of silence three times to produce 

the pulse train, which was written to a wave file (Fs = 44100, N = 16) that was used for 

stimuli presentation. 
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Figure 13. Simplified schematic of digital signal processing to create stimuli for virtual 
audio localization. 
 
 

3.1.4. Procedure 

Each run in this study involved judgments on the same 36 audio target locations, 

each presented once, in random order. There was first one practice session consisting of 

nine runs, three per condition. All of the practice trials were excluded from further 

analyses. Practice trials are important because previous research has shown learning 

effects for localization (e.g., Møller, Hammershøi, Jensen, & Sørensen, 1999). At the end 

of each run, the sound quality response screen appeared. 

The experiment consisted of ten runs for each condition, for a total of 30 runs 

(1080 trials). These runs were equally distributed across three days of testing, each 

session separated by no less than one night and no more than three nights. Each session 
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included ten runs (three runs for two conditions, and four runs for the remaining 

condition) in randomized order. Each session lasted about 75 minutes long. Changing of 

conditions (and selection of the transducer that the signal was coming through) was 

automated through the computer program. Participants wore both the bone-conduction 

transducers and the headphones throughout the experiment. 

3.1.5. Study 2b: Replication With Individualized HRTFs 

Individualized HRTFs were measured for participant 6 at the Auditory 

Localization Facility in the Air Force Research Laboratory at Wright Patterson Air Force 

Base. Stimuli were delivered inside of a geodesic sphere in which the listener stood 

during testing. The geodesic sphere had 277 vertices equally spaced in the spherical 

space, where Bose speakers were mounted. The sphere was located inside of an anechoic 

chamber. During HRTF measurement, the listener wore an Intersense IS-900 ultrasonic 

headtracker, which was used to correct for any head movement during the measurement 

procedure. Further details on the facilities can be found in Simpson, Brungart, Gilkey, 

Iyer, and Hamil (2007). The blocked-ear recording technique was administered by 

embedding Knowles FG 3329 microphones into Westone Oto-dam ear dams. The listener 

stood in the sphere as a periodic chirp train played across arrays of speakers.  

The impulse responses were created by dividing (in the frequency domain) the 

recorded signal by the presented signal. The 2048-point impulse responses were then 

treated to a 401-point Hanning window and padded with 400 zeros to a final length of 

2448 points. After these processed HRTFs were obtained, some further processing 

occurred to obtain the DTFs, as described in Middlebrooks (1999a). Before the DTFs 

were computed, a brickwall filter had to be applied to the HRTF to remove frequencies 
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below 100 Hz and above 15 kHz. Without this filter, there was a very strong boost above 

15 kHz in the DTFs, presumably because there was no content above 15 kHz in the 

common component. This boost caused the DTF impulse responses to have ringing. The 

amplitude component common to all locations was found by computing the root-mean-

squared magnitude spectrum across all locations. The phase component common to all 

locations was found by computing the Hilbert transform of the logarithm of the amplitude 

component. These were then combined to form the complex common component in the 

frequency domain. Each HRTF was then divided by the common component to form the 

frequency-domain DTF, and then transformed into the time domain to the DTF impulse 

response. 

 The locations measured at Wright Patterson Air Force Base did not exactly match 

the 400 original locations measured for the DTFs measured by Middlebrooks (2000) that 

were used in the main set of studies. To get a set of locations from the Wright Patterson 

HRTFs that were similar to the subset of locations used in the main set of studies using 

DTFs from Middlebrooks (2000), the arc length (on the great circle) between each of the 

locations used in the main study and all the locations measured at Wright Patterson Air 

Force Base was computed. Then the locations that were the closest to each location used 

in the main study were used for the individualized study. A list of locations can be found 

in Table 5. 
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Table 5 

Locations used for main study (with generalized HRTFs), individualized HRTF 

replication, and their location classifications. 

Generalized  Individualized Classification 
Azimuth (°)  Elevation (°)  Azimuth (°)  Elevation (°)  

-21  -20  -24.4  -17.8 front-mid 
-30  -50  -24.7  -50.0 front-low 
-40  -60  -45.1  -54.3 front-low 
-40  10  -42.5  14.8 front-mid 
42  -20  46.1  -15.5 front-mid 
-34  30  -32.5  25.2 front-mid 
-22  30  -20.8  32.1 front-mid 
0  0  3.2  -1.0 front-mid 
13  40  19.1  36.2 front-high 
-20  60  -25.4  57.2 front-high 
-160  -41  -159.6  -34.2 back-low 
160  -41  167.6  -36.7 back-low 
-135  -11  -136.1  -16.6 back-mid 
-140  9  -136.6  8.5 back-mid 
-180  -11  -179.7  -16.7 back-mid 
-150  19  -154.4  15.9 back-mid 
170  19  170.6  21.1 back-mid 
-138  39  -134.1  33.4 back-high 
165  69  144.3  71.9 back-high 
-135  49  -140.1  53.4 back-high 
-90  -40  -91.6  -36.6 side-low (L) 
-103  -21  -101.7  -27.0 side-mid (L) 
-74  20  -73.6  26.6 side-mid (L) 
-110  9  -111.0  8.9 side-mid (L) 
-70  10  -69.4  7.4 side-mid (L) 
-53  -20  -52.1  -19.0 side-mid (L) 
-90  69  -98.5  67.4 side-high (L) 
-124  49  -128.5  44.5 side-high (L) 
120  -50  110.0  -50.1 side-low (R) 
64  -20  59.5  -15.0 side-mid (R) 

116  -1  119.0  -0.7 side-mid (R) 
80  10  74.9  8.1 side-mid (R) 
50  10  48.7  9.2 side-mid (R) 
74  -20  72.4  -13.5 side-mid (R) 

120  69  105.3  71.5 side-high (R) 
101  49  102.9  47.0 side-high (R) 
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The subsequent filtering algorithms were identical to those with the frequency-

scaled DTFs, except the individualized DTFs were used rather than the non-

individualized frequency scaled DTFs. Study 1 and study 2 were then replicated to 

generate the data. 

3.2. Results 

3.2.1. Overview 

The primary analysis of data for the present studies will be the review of patterns 

in each participant or group of participants. Conventional inferential statistics (i.e., 

ANOVA) will also be performed on aggregate data. It is important to note that these 

statistics must be interpreted with caution, because of the small number of participants 

and high number of trials in this study (as is typical in psychophysics). The pooling of 

data across trials and small number of participants results in a test with low statistical 

power that can only detect quite large effects. Considered within the signal-detection 

response framework, inferential statistics still provide important information about effects 

present in our sample that occur in the population (“hits”), but may have a high “miss” 

rate of detecting condition effects. 

The repeated-measures analysis of variance (ANOVA) has three key assumptions: 

independence of scores, sphericity, and normally distributed populations (Keppel, 1991). 

The randomization of trials within a condition and randomization of condition order in 

the present studies ensured that the scores were independent. The sphericity assumption 

includes the homogeneity of variance assumption that is shared with between-subjects 

designs, but also includes an assumption about the correlations between pairs of 
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conditions (Howell, 2002). To address this assumption, an inferential evaluation of 

sphericity will be conducted in all the ANOVAs presented here.  

The normal population distribution assumption is a more complicated issue in the 

present studies. If the population is not normal, but is symmetrical and the sample size is 

greater than 12, then there are no meaningful consequences of violating this assumption 

(Clinch & Keselman, 1982; Tan, 1982 as cited in Keppel, 1991). In the present studies, 

however, the sample size is only seven, which means it is not protected from normality 

violations. Furthermore, assessing whether a population is normal based on a histogram 

of seven points is a futile exercise. A consideration of the central limit theorem (CLT) is 

relevant in a discussion of the shape of an underlying population distribution. 

The CLT states that the distribution of a population of means approaches normal 

as n, the sample size, increases (Howell, 2002). In the most direct interpretation, the 

population of means is the population underlying each summary statistic (e.g., Pearson’s 

r, average azimuth error), and n is the number of empirical data points attained for each 

condition (one for each person) in this study. This would suggest that with an n of only 

seven, the central limit theorem does not help the situation at hand. However, the CLT 

can also be conceptualized in terms of the raw data used to compute the summary 

statistics and the physiological system underlying the localization judgments. 

Specifically, the population underlying the summary statistics can be conceptualized as 

the azimuth and elevation data (which are the basis for the summary statistics). 

Furthermore, the sample underlying the azimuth and elevation judgments can be thought 

of as the neurons and neural systems that determine the behavioral response. In this case, 

the size of the sample is quite large and the underlying population certainly approaches a 
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normal distribution; therefore the ANOVA assumption of normality is certainly met. 

Nevertheless, the shape of the summary statistic population is not known, and only seven 

aggregate data points makes assessing this assumption difficult. Thus, the unknown 

nature of the population distribution’s shape will remain as a caveat for the ANOVAs 

conducted for the present studies. As the statistics are reviewed, those that are unlikely to 

have a normal underlying population will be pointed out. 

The sequence of data presented below will be as follows: First the raw data plots 

of stimulus-response data will be reviewed, for the azimuth and elevation planes, for each 

condition. A regression line will be fit to the elevation raw data sets, and characteristics 

of the regression results will be described for each participant. Then the front/back 

reversals, up/down reversals, and coordinate system artifacts will be resolved, and the 

raw data points plus regression line will again be presented.  Next, the rate of front/back 

and up/down reversals will be considered across conditions and participants. Then trends 

in summary localization performance statistics, with the reversals resolved, will be 

reviewed. The summary localization statistics will include measures of error, bias, and 

variability. Participants’ subjective ratings given at the end of each block will be 

subsequently described. Then the data collected with the individualized HRTFs on 

participant 6 will be reviewed, in comparison with the data collected with generalized 

HRTFs on participant 6.  
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3.2.2. Raw Data and Stimulus-Response Trends 

Raw Scatter Plots and Line Fitting 

All responses were computed in terms of the conventionally used single vertical 

pole coordinate system (e.g., Wightman & Kistler, 1989b). In this coordinate system (see 

Figure 14), azimuth gives the front-to-back and left-to-right position of the sound source. 

Negative numbers indicate a stimulus on the left and positive numbers indicate a stimulus 

on the right, with 0 degrees being direction in front of the listener, -90 degrees being 

directly to the left of the listener, +90 degrees being directly to the right of the listener, 

and +/-180 degrees being directly behind the listener. For elevation, 0 degrees is straight 

ahead of the listener, -90 degrees is directly below the listener , and +90 degrees is 

directly above the listener. 

 
Figure 14. Single vertical pole system used in this set of studies, with azimuth and 
elevation. 
 
 
 

Scatter plots of the audio localization data for each participant and condition, for 

azimuth and elevation, can be seen in Figure 17 through Figure 26. An orientation to the 
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scatter plot and important data patterns can be found in Figure 15 and Figure 16. For both 

azimuth and elevation plots, the target position is on the x-axis and the judgment position 

on the y-axis. Thus, perfect performance would result in data points falling on the 

diagonal. For azimuth, there are three additional patterns of data on the scatter plot: 

front/back reversals, two-cluster response pattern, and wrap-around artifacts (see Figure 

15 and Figure 16). Figure 15 shows the two areas where front/back reversals occur, 

which are perpendicular to the diagonal. Front/back reversals occur when a sound is 

presented in the front hemi-field and perceived in the back, or vice versa. The two-cluster 

response pattern can also be seen – this typically occurs when listeners respond with 

many different azimuths at varied azimuths around their head, but are only correctly 

judging whether the stimulus is on the left or right, and never hear the sound in front. A 

variant of the two-cluster response pattern is the binary response pattern, in which there is 

no judgment variability, and listeners simply respond that the sound is on the left or right. 

Figure 15 also shows the two regions for “wrap-around” artifacts, which occur when a 

stimulus would be closer to the diagonal if it was expressed in terms of the other 

(left/right) hemisphere’s coordinate system. These will be subsequently discussed in 

more detail. For elevation, there is one important pattern on the scatter plot besides 

perfect performance, and that is the region perpendicular to the diagonal where up/down 

reversals occur (see Figure 16). 
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Figure 15. Azimuth scatter plot with orientation to important data patterns: perfect 
performance, “wrap-around” artifacts, two-cluster response pattern, and front/back 
reversals. 
 
 
 

 
Figure 16. Elevation scatter plot with orientation to important data patterns: perfect 
performance and up/down reversals. 
 
 
 

Lines of best-fit were computed for each elevation scatter plot. Simple linear 

regression was performed on the raw data for elevation to determine the line of best fit. 

Simple linear regression takes a set of two variables (in the present case stimuli and 
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response), and produces an equation that describes the best-fitting line, by minimizing the 

sum of squared errors between the actual and predicted y values (Howell, 2002). 

 

The line can be defined by the simple following equation: 

Y = bX + a 

Where 

Y = the predicted value of Y 

b = the slope of the regression line 

a = the y-intercept of the line 

X = the value of the predictor variable 

(Howell, 2002). 

The slope of a regression line describes “the rate of change in Y units per X unit” 

(Cohen & Cohen, 1983, pp. 42-43). With stimulus position as X and stimulus response as 

Y, a slope of one is expected for perfect localization performance. A reduction in slope 

from a value of one indicates a decrease in accuracy, and possibly a compression in the 

response space. 

The R2 statistic indicates “the proportion of the variance of Y linearly associated 

with x” (Cohen & Cohen, 1983, p. 47). Thus, it serves as a measure of the degree to 

which the regression line fits the data. In the case of the present data, a lower R2 value 

indicates more responses distant from the regression line, and thus a less accurate 

response. 

The raw azimuth data were not suitable for regression analyses because of the 

unsuitability of the circular azimuth coordinate system to linear (or curvilinear) analysis. 
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In a subsequent section, an analysis with corrections for these issues will be presented. 

One problem with the azimuth data is its “wrap-around” artifact (see Figure 15 above). 

For example, if the stimulus is presented at +178 degrees azimuth, and the response is 

made at -178 degrees azimuth, this will influence the regression slope and R2 by a 

disproportionate amount. Specifically, it will be treated in the regression analysis as an 

error of 356 degrees, when it is really best described as an error of only 4 degrees. 

Furthermore, this data point presents itself as an outlier, which heavily influence 

correlations (Bordens & Abbott, 2005). Another complication with performing a 

regression analysis on the azimuth data are front-back confusions. They present 

themselves as outliers, when they are perfectly expected to occur (even in free-field 

listening), and thus will influence the regression slope and R2 a disproportionate amount.  

The scatter plot of data for azimuth and elevation across conditions will now be 

described (see Figure 17 through Figure 26). The scatter plots are laid out in a matrix 

with three rows (one for each condition) and two columns (one for each plane: azimuth 

and elevation). The black rings indicate the participants’ raw responses, the blue diagonal 

line (darker line when printed in grayscale)  indicates perfect performance, and the red 

line (lighter line when printed in grayscale) indicates the line of best fit by simple 

regression. The regression equation and R2 value for the elevation data can be found to 

the left of each elevation graph. As the set of scatter plots is described for each 

participant, the fit of the data to the diagonal and for the elevation the slope of the line 

that the data fall on will be described. Terms such as low, moderate, and high will be 

used for analysis of the elevation regression data. For these analyses, a low slope is less 

than .3, a moderate slope is between .3 and .6, and a high or steep slope is greater than .7. 
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For the elevation fit (as indexed by R2), a low fit is less than .2, a moderate fit is between 

.2 and .3, and a high fit is greater than .3 (r >.55).  These values were determined based 

on the range of data present in the current sample. 
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Figure 17. Scatter plots for participant 1. For azimuth, the air condition baseline shows 
many points that fall close to or on the diagonal, with a large amount of front/back 
reversals on the cross-diagonal. For the adjusted bone azimuth, data points begin to fall 
off the diagonal more, with less stimuli perceived in front (the center of the plot), 
beginning to take on a “two-cluster” response pattern. For the unadjusted bone azimuth, 
the responses begin to form into two clusters, but still have some stimuli perceived in 
front. For elevation, the air condition baseline data fall on a moderately sloped diagonal, 
with a moderate amount of spread from that diagonal. This is echoed in the shallow slope 
of the regression line (.22) and low fit of the data to that line (R2 = .13). When going from 
the air condition to the adjusted bone then unadjusted bone condition, the data points fall 
on a progressively shallower sloped line and become more spread out around that line, as 
indicated by the monotonically decreasing regression slope and R2 value. 
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Figure 18. Scatter plots for participant 2. For azimuth, the air condition baseline shows a 
large number of points that fall on or close to the diagonal, with a large amount of 
front/back reversals on the cross-diagonal. For the adjusted bone azimuth, data points 
begin to fall off the diagonal more, with less stimuli perceived in front (the center of the 
plot), taking on a “two-cluster” response pattern. For the unadjusted bone azimuth, the 
pattern is relatively similar. For elevation, the air condition baseline data fall on a steeply 
sloped diagonal, with a low amount of spread from that diagonal. This is echoed in the 
near-perfect slope of the regression line (.90) and high fit of the data to that line (R2 = 
.58). When going from the air condition to the adjusted bone then unadjusted bone 
condition, the data points fall on a progressively shallower sloped line and become more 
spread out around that line, as indicated by the monotonically decreasing regression slope 
and R2 value. 
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Figure 19. Scatter plots for participant 3. For azimuth, the air condition baseline shows 
many points that fall on or close to the diagonal, with a slight binary response pattern and 
some front/back reversals. For the adjusted bone azimuth, data points begin to fall off the 
diagonal more, with less stimuli perceived in front, and less of a binary response pattern. 
For the unadjusted bone azimuth, the pattern is relatively similar, but with the response 
pattern becoming binary again. For elevation, the air condition baseline data are quite 
variable, but generally fall on the diagonal. This is echoed in the moderate slope of the 
regression line (.39) and low fit of the data to that line (R2 = .12). When going from the 
air condition to the adjusted bone condition, the data points become increasingly variable, 
and fall on a shallower sloped line, as indicated by the decreased regression slope and R2 
value. However, the unadjusted bone condition then gives an increased regression slope 
and decreased variability (increased R2) relative to the adjusted bone condition. 
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Figure 20. Scatter plots for participant 4. For azimuth, the air condition baseline shows 
relatively few data points falling on the diagonal, no stimuli perceived in the frontal 
region, and many front–to-back reversals, forming a “two-cluster” response pattern. For 
the adjusted bone azimuth, the data look similar. For the unadjusted bone azimuth, the 
pattern is still similar, but with slightly more of a binary response pattern on the right-
hand side. For elevation, the air condition baseline data fall on a steeply sloped diagonal, 
with a relatively low amount of spread from that diagonal. This is echoed in the high 
slope of the regression line (.86) and good fit of the data to that line (R2 = .38). When 
going from the air condition to the adjusted bone then unadjusted bone condition, the data 
points fall on a progressively shallower sloped line and become more spread out around 
that line, as indicated by the monotonically decreasing regression slope and R2 value. 
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Figure 21. Scatter plots for participant 5. For azimuth, the air condition baseline shows 
many points that fall on the diagonal, except at the ends (few stimuli were perceived in 
back), and some front/back reversals. For the adjusted and unadjusted bone azimuth, the 
response pattern tends to become less varied and slightly binary. For elevation, the air 
condition baseline data fall on a moderately sloped diagonal, with a relatively low 
amount of spread from that diagonal. This is echoed in the slope of the regression line 
(.67) and fit of the data to that line (R2 = .33). When going from the air condition to the 
adjusted bone then unadjusted bone condition, the data points fall on a progressively 
shallower sloped line and become more spread out around that line, as indicated by the 
monotonically decreasing regression slope and R2 value. 
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Figure 22. Scatter plots for participant 6. For azimuth, the air condition baseline shows a 
large number of data points that fall on the diagonal, besides the large amount of 
front/back reversals on the cross-diagonal. For the adjusted and unadjusted bone azimuth, 
the response patterns are similar but with a bit more variability. For elevation, the air 
condition baseline data fall on a steeply sloped diagonal in the top hemi-field, but few 
stimuli are perceived in the lower hemi-field. This pattern is echoed in the slope of the 
regression line (.41) and fit of the data to that line (R2 = .37). When going from the air 
condition to the adjusted bone then unadjusted bone condition, the data points fall on a 
progressively shallower sloped line and become more spread out around that line, as 
indicated by the monotonically decreasing regression slope and R2 value. 
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Figure 23. Scatter plots for participant 7. For azimuth, the air condition baseline shows a 
large number of points that fall on the diagonal, besides the large amount of front/back 
reversals on the cross-diagonal. For the adjusted bone azimuth, stimuli are no longer 
perceived on the frontal region, forming the “two-cluster” response pattern, and the 
front/back reversals become biased towards the back. The two-cluster response pattern 
becomes slightly more prominent in the unadjusted bone condition. For elevation, the air 
condition baseline data fall on a steeply sloped diagonal, with a low amount of spread 
from that diagonal. This is echoed in the steep slope of the regression line (.71) and high 
fit of the data to that line (R2 = .48). When going from the air condition to the adjusted 
bone then unadjusted bone condition, the data points fall on a dramatically shallower 
sloped line and become more spread out around that line, as indicated by the 
monotonically decreasing regression slope and R2 value. 
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Figure 24. Scatter plots for participant 8. For azimuth, the air condition baseline shows 
that few points fall on to the diagonal, with no stimuli perceived in the frontal region and 
many front–to-back reversals, showing a “two-cluster” response pattern. For the adjusted 
bone and unadjusted bone condition, the data is similar but takes on a progressively more 
binary response pattern. For elevation, the air condition baseline data fall on a moderately 
sloped diagonal, with a moderate amount of spread from that diagonal, reflected in the 
moderate slope of the regression line (.37) and high fit of the data to that line (R2 = .28). 
When going from the air condition to the adjusted bone condition, the data points become 
increasingly variable, and fall on a shallower sloped line, as indicated by the decreased 
regression slope and R2 value. However, the unadjusted bone condition then gives an 
increased regression slope and decreased variability (increased R2) relative to the adjusted 
bone condition. 
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Figure 25. Scatter plots for participant 9. For azimuth, the air condition baseline shows 
many points that fall on the diagonal everywhere but the ends (few stimuli perceived in 
back), a slight binary response pattern, and some front/back reversals. For the adjusted 
and unadjusted bone azimuth, the response pattern remains similar, but with a bit more 
response variability. For elevation, the air condition baseline data fall on a very shallow-
sloped diagonal, with very little range in the elevation response (nearly all responses are 
within +/- 20 degrees). This is echoed in the slope of the regression line (.05). When 
going from the air condition to the adjusted bone then unadjusted bone condition, the data 
points remain tightly grouped around a slightly sloping line. 
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Figure 26. Scatter plots for participant 10. For azimuth, the air condition baseline shows 
that many points fall on the diagonal at the ends, but no stimuli are perceived in the 
frontal region and there are many front–to-back reversals, with a mix of a “two-cluster” 
and binary response pattern. For the adjusted bone and unadjusted bone condition, the 
data remains similar, with a bit more response variability in the right hemi-field, taking 
on a “two-cluster” response pattern. For elevation, the air condition baseline data fall on a 
very low sloped diagonal (with exception of a few points), with very little range in the 
elevation response (nearly all responses are within +/- 20 degrees). This is echoed in the 
slope of the regression line (.08). When going from the air condition to the adjusted bone 
then unadjusted bone condition, the data points remain tightly grouped around a slightly 
sloping line. 
 



 62 

General Trends and Participants Excluded 

The raw azimuth data showed quite varied patterns across participants, but there 

were a few consistent trends worth noting. In general, most air condition scatter plots 

showed a strong cross-diagonal, indicating a large amount of baseline front/back 

reversals. Three participants (participants 1, 2 and 7) showed a consistent trend of having 

many air-conduction data points fall on the diagonal, then in the bone-conduction 

conditions showing fewer data points that fall on the middle of the diagonal, suggesting a 

decrease in the number of sounds perceived to be directly in front of the listener, as well 

as a two-cluster response pattern. Several other participants started with very few stimuli 

perceived in front in the air condition (participants 4, 5, 8 and 10). 

With the exception of participants 3, 8 and 10, all participants showed a trend of 

the raw elevation regression line slope decreasing when going from air conduction to 

adjusted bone conduction to unadjusted bone conduction. This same trend occurred for 

the R2 values, indicating a spread in the pattern of responses from that regression line, 

and thus decreased accuracy.  

For four participants, the difference in slope between the air and adjusted bone 

condition was larger than the difference in slope between adjusted bone and unadjusted 

bone conditions. For two participants, the differences between the two sets of conditions 

were similar. For one participant, the difference in slope between the bone conditions was 

greater than the difference between the air and adjusted bone condition. A similar pattern 

occurred for the R2 statistic. 
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Table 6 

Regression Slope (b) and R2 values for raw azimuth and raw elevation data. 

  Slope (b)  R2 

Participant  Air 
Adjusted 

Bone 
Unadjusted 

Bone  Air 
Adjusted 

Bone 
Unadjusted 

Bone 
1  0.22 0.15 0.08  0.13 0.05 0.02 
2  0.90 0.50 0.33  0.58 0.32 0.21 
3  0.39 0.23 0.32  0.12 0.05 0.09 
4  0.86 0.64 0.40  0.38 0.25 0.12 
5  0.67 0.43 0.30  0.33 0.18 0.09 
6  0.41 0.22 0.16  0.37 0.19 0.10 
7  0.70 0.25 0.08  0.48 0.12 0.02 
8  0.37 0.17 0.26  0.28 0.07 0.15 
9  0.05 0.06 0.03  0.16 0.14 0.03 

10   0.08 0.00 0.00   0.08 0.00 0.00 
Average   0.47 0.27 0.20   0.29 0.14 0.08 
Standard 
Deviation  0.31 0.20 0.14  0.17 0.10 0.07 

 
 

Participants 9 and 10 had a restricted range of elevation judgments, such that 

nearly all responses in the air conduction condition were less than +/-20 degrees. Thus, 

they showed virtually no sensitivity to elevation in the condition that serves as the 

baseline reference (air conduction). Thus, it is nearly impossible to evaluate the effect of 

the pathway and filter on their elevation performance. Because elevation is such an 

important part of the evaluation of the pathway and filter effects, and this indicates a 

general difficulty in localization with these HRTFs, participants 9 and 10 were excluded 

from all future analyses. 
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Participant 8 presented the opposite trend from most other participants in 

elevation slope and R2 values within the bone conduction conditions, with the unadjusted 

bone conduction values being higher than the adjusted bone conduction values. 

Participant 8 had particular difficulty getting the ER-1 headphones inserted to an 

appropriate depth in the early sessions (more than any other participant), which included 

the equal loudness adjustments for building the BAF. Participant 8’s results in light of 

this issue are not surprising – the user guide that accompanies the ER-1 headphones 

indicate that the frequency response resulting at the eardrum is highly dependent on 

insertion depth. The insertion depth was not corrected upon initial observation for two 

reasons: 1) it seemed that any further depth would cause discomfort for the participant, 

and 2) the participant was run early on in data collection, before the degree of sensitivity 

to insertion depth was realized. To verify that participant 8’s BAF was ill-formed, the 

BAF was measured again after completion of Study 2, this time with a slightly deeper 

insertion that came from experience in the experiment sessions. A plot of the initial BAF 

and post-experiment BAF can be found in Appendix A, Figure A8. The post-experiment 

BAF shows peaks and notches not present in the original BAF, giving further 

confirmation that the BAF was not appropriately measured for this participant. Given all 

this evidence that the atypical results were caused by an anomaly associated with the 

acoustic apparatus, participant 8 was excluded from all future analyses. 

 Participant 3 showed the same “opposite” trend that deviated from most other 

participants. Participant 3 also had difficulty getting the headphones inserted to an 

appropriate depth, but no more definitively than the other few participants who had 

difficulty but did not show the same trend. Participant 3 even had one session where the 
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elevation slope and R2 indicated better performance for the unadjusted bone condition 

than for the air condition. This would not be surprising given improper insertion, which 

would render inappropriate air-conduction spectral cues. In the session that participant 3 

had the best air-conduction elevation performance (indicated by slope and R2), their 

elevation performance followed the trend of the other participants (air was better than 

adjusted bone, which was better than unadjusted bone). This could have been one session 

when the insertion was appropriate, rendering the spectral cues appropriately in the air-

and adjusted bone condition. Because participant 3’s difficulty with insertion could not 

be definitively shown to be worse than others whose data are not excluded, participant 3 

was included in subsequent analyses. 

Inferential Treatment of Slopes and Fit 

A one-way repeated measures ANOVA was conducted on the raw elevation slope 

values to see if the pattern of regression slopes found in this sample can be generalized to 

the population. There was an omnibus effect of condition on regression slope (F(2,12) = 

18.64, p < .001). Tukey’s Honestly Significant Difference (“HSD”) posthoc analyses 

were used here and in all other follow-up tests to find which pairwise comparisons were 

statistically significant. The difference in elevation slope between air conduction and 

adjusted bone conduction, as well as between air conduction and unadjusted bone 

conduction, was statistically significant, but the difference between the adjusted bone 

conduction condition and unadjusted bone conduction condition did not quite reach 

statistical significance (see Table 7). 
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Table 7 

Post-hoc tests for effect of condition on elevation regression slope. Critical q(3,12) = 

3.77 at .05 significance level. 

Comparison q1 

Air – Adjusted Bone 7.01* 

Air – Unadjusted Bone 6.25* 

Adjusted Bone – Unadjusted Bone 3.61 

1these and al subsequent q values were computed based on t values from a paired-samples 
t-test conducted in SPSS. q values were computed using the following formula: q = 
t*

! 

2 (Howell, 2002). This q value was then compared to the critical q value from a 
lookup table (hence exact p values were not available). 
*p < .05 
 
 

A similar analysis was done on the pattern of fit to the regression line (indexed by 

Pearson’s r). r, rather than R2 is used because there is a transformation specifically 

designed for r that makes it suitable for ANOVAs. Because r is directly related to R2, (r*r 

= R2) it still serves as an index of how well the regression line fits the data. In addition, r 

alone can serve to describe the degree of linear relationship (Cohen & Cohen, 1983). 

It is a somewhat unusual situation to have a correlation coefficient as a score for 

each participant, but this certainly does occur in research, when using Q-sorts in 

personality and clinical psychology areas (Cohen & Cohen, 1983; e.g., Teti & McGourty, 

1996). To do an inferential test on the correlation coefficient, a transformation is needed 

to make r “more likely to satisfy the normality and equal variance assumptions when 

used as a dependent variable” (Cohen & Cohen, 1983, p. 271). 
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Fisher’s r to z’ transformation can be defined by: 

z’ = ½ [ln(1+r) – ln (1-r)] 

where ln is the natural logarithm (Cohen & Cohen, 1983, p. 53). 

 A one-way repeated measures ANOVA was conducted on the transformed 

elevation r (i.e., z’) values to see if the pattern of correlation values found in this sample 

can be generalized to the population. Mauchley’s test of sphericity showed that equal 

variances could not be assumed (W(2) = 0.249, p = .031). Geisser-Greenhouse 

corrections were made to the degrees of freedom to correct for the positive alpha bias that 

occurs with unequal variances. With this correction the ANOVA showed an omnibus 

effect of condition on r, F(1.14,6.85) = 20.34, p = .002. Tukey’s HSD posthoc analyses 

showed statistically significant differences between all comparisons: air conduction - 

adjusted bone conduction, air conduction - unadjusted bone conduction, and adjusted 

bone conduction - unadjusted bone conduction (see Table 8). 

 
 
Table 8 

Post-hoc tests for effect of condition on fit to regression line (indexed by Pearson’s r, 

transformed to Fisher’s z’). Critical q(3,12) = 3.77 at .05 significance level. Degrees of 

freedom adjusted by Greenhouse-Geisser correction. 

Comparison q 

Air – Adjusted Bone 7.13* 

Air – Unadjusted Bone 6.49* 

Adjusted Bone – Unadjusted Bone 4.29* 

*p < .05 
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Resolved and Corrected Scatter Plots 

As previously mentioned, the circular geometry of the azimuth coordinates 

prevents regression analyses. To provide azimuth data that were suitable for regression 

analyses, a “resolved azimuth” data set was formed. The first operation done to the 

azimuth data was the resolution of the front/back reversals (where the stimulus is 

presented on the front hemifield, and is perceived in the rear hemifield, or vice versa). 

Gross errors in hemisphere (reversals) are a separate class of errors than smaller 

localization “blur” (Blauert, 1997). To deal with this separate class of errors, reversals are 

often counted and then resolved (recoded into the correct quadrant) for subsequent 

summary statistics, which avoids overstating the typical localization error (Wightman & 

Kistler, 1989b)).  

Front/Back reversals were determined and resolved in a manner similar to 

Wightman & Kistler (1989b). For each stimulus/response pair, the response was reflected 

across the coronal plane (vertical plane passing through ears). This is done by putting the 

response in the opposite front/back hemisphere and in the same left/right hemisphere, at 

the same distance from the sagittal plane (vertical plane passing from nose to center of 

back of head; see Figure 27). If the error between stimulus and response was smaller with 

this reflection, then a front/back confusion was counted (the count data were used for 

subsequent computations of reversal rates), and the response was “resolved” by using its 

reflected value for all analyses. 
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Figure 27. Example of a prototypical front/back reversal. Note how the reflected 
response is closer to the stimulus than the original response. This response would be 
scored as a front/back reversal and the reflected value would be used in all subsequent 
analyses. 
 
 
 

The convention established by Wightman & Kistler (1989b) was modified by 

adding an exclusion range for the reversal computations. If the stimulus or response was 

within 15 degrees of the coronal plane, it was not eligible for a reversal. The value of 15 

degrees was chosen based on the assertion that anything within a range of 30 degrees 

around the left or right ear should be categorized as local error, rather than be eligible to 

be counted as a reversal. This more conservative definition of a reversal was utilized to 

restrict the resolution of reversals to more prototypical reversals, and avoid resolutions 

that result in only small reductions in error (see Figure 28). With a 15 degree front/back 

exclusion range, a trial was not eligible for a reversal if the stimulus or the response was 

between +/- 75 and 105. 
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Figure 28. Example of what could be classified as a front/back reversal without an 
exclusion range. Note that this response is better described as localization blur than a 
gross error in hemisphere. An exclusion range of 15 degrees was used to avoid stimulus-
response patterns such as this one being classified as a reversal, when they are more 
appropriately grouped with small errors in localization. 
 
 
 

A procedure analogous to the one just discussed was also done for confusions in 

the up/down dimension. In this case, the response was reflected across the axial 

(horizontal) plane placed at 0 degrees elevation (see Figure 29). An exclusion range of 15 

degrees was again used for this computation: if the stimuli or response was -15 to +15 

elevation, the trial was ineligible for reversal. 
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Figure 29. Example of a prototypical up/down reversal. The reflected response is closer 
to the stimulus than the original response, and thus would be scored as an up/down 
reversal. The reflected value would then be used in all subsequent analyses. 
 
 

The wrap-around artifact present in the azimuth data was also addressed in this 

analysis. As previously shown, the wrap-around artifacts occur in the bottom-right and 

top-left portion of the plot, and cause the point to be treated as farther away from the 

stimulus than it really is. This problem can be conceived in terms of two separate azimuth 

coordinate systems: a left (positive) and right (negative) coordinate system. When the 

stimulus and response pair cross the boundary coordinate system boundary (180/-180 

degrees), the linear plot of the azimuth number system makes the response look farther 

away (from the diagonal) than it truly is in circular space. Thus, sometimes the response 

would look closer to the stimulus (the diagonal) in the other hemisphere’s coordinate 

system on a linear plot, even though it is in the same place in circular space. To correct 

for this artifact, every response was converted to its position in the other hemisphere’s 

coordinate space. The distance from the stimulus was then computed for the response in 
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its own coordinate response system and in the other hemisphere’s coordinate system. The 

response that led to the least distance from the stimulus was then stored as the corrected 

response and plotted in the graph. It is important to note that there was no change in the 

actual position of the response (like there was for the front/back reversal resolution), but 

instead the data were just put into a different coordinate system. Consider as an example 

a stimulus at -173 degrees and a response at 165 degrees (see Figure 30). In absolute 

distance on a linear plot, the response would be 338 degrees away from the stimulus (i.e., 

the diagonal). In circular space, it can be clearly seen that the response is really only 22 

degrees away from the stimulus. The response can be figured to be 22 degrees in linear 

space if it is put in the stimulus’s coordinate system: 165 degrees in the left hemisphere’s 

coordinate system is - 195 degrees, which is 22 degrees away from -173 degrees in linear 

space. In this case, the artifact removal algorithm would cause the point would be plotted 

as -195 degrees, rather than the original 165 degrees. As an example of a response that 

would not require conversion into the other hemisphere’s coordinate space, consider a 

stimulus at -175 degrees and a response at -163 degrees. The response in the right 

hemisphere’s coordinates would be 197 degrees, which would be 372 degrees away from 

the stimulus in linear space. In this case, the artifact removal algorithm would cause the 

original response to be stored and plotted, with no corrections made. 
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Figure 30. Wrap-around artifact that occurs for azimuth. On the left is a depiction of a 
response and stimulus in circular azimuth space, and on the right is a depiction of the 
same response and stimulus in linear space. In circular space, the stimulus and response 
are quite close to each other in circular space (22 degrees apart). In linear space, however, 
the uncorrected response is 338 degrees away from the stimulus. Correcting for the wrap-
around artifact by putting the right-hemisphere response into the left-hemisphere 
coordinate system leads to the appropriate distance on the linear scale (22 degrees). 
 
 

 The data plotted with front/back reversals resolved for azimuth, as well as wrap-

around artifacts removed, and up/down reversals resolved for elevation, can be found in 

Figure 31 through Figure 37 below. The layout is the same as Figure 17 through Figure 

26, in a matrix of plots. The regression equation and R2 value for each data subset can be 

found to the bottom-right of each azimuth graph, and to the top-left of each elevation 

graph. The scatter plots will again be described for each participant, with the regression 

line that the data fall on discussed for each plot. Terms such as low, moderate, and high 

(determined based on this sample’s range of values) will again be defined for these 

analyses to describe regression slope and fit. For the azimuth data, there was a small 

range of slope and R2 values; a high slope is defined as a value greater than or equal to .9, 

a moderate slope is any value less than .9, a high fit is any R2 value greater than or equal 
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to .9, and a moderate fit is any value less than .9. For the elevation data, a high slope is 

greater than or equal to .9, a low slope is less than or equal to .5, and a moderate slope is 

between the two. A high fit is any R2 value greater than or equal to .5, a low fit is less 

than .3, and a moderate fit is any value between the two. 



 75 

 
Figure 31. Scatter plots for participant 1, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
moderately sloped regression line (b=.83) with a medium spread from the regression line 
(R2 = .85). Relative to the air condition, the regression line for the adjusted bone 
condition data show an increase in slope and very slight reduction in fit. When going to 
the unadjusted bone condition, the slope is reduced to a level similar to the air condition 
and the fit remains the same. For elevation, the air condition data fall on a shallow sloped 
regression line (b=.29) with low fit to the regression line (R2 = .22). The slope and fit stay 
roughly the same for the adjusted bone condition, but in the unadjusted bone condition 
the slope decreases slightly while the fit stays roughly the same. 
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Figure 32. Scatter plots for participant 2, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=.98) and high fit to that line (R2 = .94). Relative to the 
air condition, the regression for the adjusted bone and unadjusted bone conditions shows 
similar slope and very slight reduction in fit. For elevation, the air condition data fall on a 
steeply sloped regression line (b=.91) with a high fit to that regression line (R2 = .6). 
When going from the air condition to the adjusted bone then unadjusted bone condition, 
the data points fall on a much shallower sloped line and become more spread out around 
that line, as indicated by the monotonically decreasing regression slope and R2 value. 
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Figure 33. Scatter plots for participant 3, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=.89) with a moderate fit to that line (R2 = .85). Relative 
to the air condition, the regression for the adjusted bone shows similar slope and fit. The 
unadjusted bone condition then shows a slight reduction in slope and similar fit. For 
elevation, the air condition data fall on a regression line with moderate slope (b=.7) and 
have a moderate fit to that line (R2 = .35). Relative to the air condition, the adjusted bone 
condition data fall on a shallower sloping regression line with a lower fit to that line. 
Then the unadjusted bone condition data fall on a steeper sloping regression line with a 
higher fit to that line. 
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Figure 34. Scatter plots for participant 4, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=1.06) with a high fit to that regression line (R2 = .94). 
Relative to the air condition, the regression line for the adjusted bone condition shows a 
small reduction in slope and similar fit to that line, and the unadjusted bone condition 
data shows a further reduction in slope and fit to the regression line. For elevation, the air 
condition data fall on a regression line with steep slope (b=1.18) and have a high fit to 
that line (R2 = 63). When going from the air condition to the adjusted bone then 
unadjusted bone condition, the data points fall on a shallower sloped line and become 
more spread out around that line, as indicated by the monotonically decreasing regression 
slope and R2 value. 
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Figure 35. Scatter plots for participant 5, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=91) with a moderate fit to that regression line (R2 = .86). 
Relative to the air condition, the regression for the adjusted bone shows slightly reduced 
slope and similar fit. The unadjusted bone condition then shows a similar slope and fit. 
For elevation, the air condition data fall on a regression line with steep slope (b=.97) and 
have a high fit to that line (R2 = 53). When going from the air condition to the adjusted 
bone then unadjusted bone condition, the data points fall on a shallower sloped line and 
become more spread out around that line, as indicated by the monotonically decreasing 
regression slope and R2 value. 
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Figure 36. Scatter plots for participant 6, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=.97) with a high fit to that regression line (R2 = .93). 
Relative to the air condition, the regression for the adjusted bone shows similar slope and 
fit. The unadjusted bone condition then shows a reduced slope and similar fit. For 
elevation, the air condition data fall on a regression line with low slope (b=.46) and have 
a moderate fit to that line (R2 = .44). When going from the air condition to the adjusted 
bone then unadjusted bone condition, the data points fall on a shallower sloped line and 
become more spread out around that line, as indicated by the monotonically decreasing 
regression slope and R2 value. 
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Figure 37. Scatter plots for participant 7, with front/back errors adjusted resolved and 
wrap-around artifact removed. For azimuth, the air condition baseline data fall on a 
steeply sloped regression line (b=.99) with a high fit to that regression line (R2 = .95). 
Relative to the air condition, the regression for the adjusted bone shows a steeper slope 
similar slope and fit. The unadjusted bone condition then shows a similar slope and fit. 
For elevation, the air condition data fall on a regression line with moderate slope (b=.76) 
and have a high fit to that line (R2 = .55). Relative to the air condition, the adjusted bone 
condition data fall on a shallower sloping regression line with a lower fit to that line. 
Then the unadjusted bone condition data fall on a steeper sloping regression line with a 
higher fit to that line. 
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General Trends and Inferential Treatment 

Table 9 replicates the slope and R2 values for both resolved azimuth and resolved 

elevation for every participant. The azimuth data and regression lines generally showed a 

steep slope and high fit relative to perfect performance, with little variation between 

participants. Within this small variation, the patterns of slope across conditions did differ 

between participants, but there were no consistent trends across participants. The fit to 

the regression line (R2), however, did have one consistent trend: the fit was always best 

for the air-conduction condition (except for participant 7), and the two bone conditions 

had similar fit. 

The elevation data and corresponding regression lines showed the same trend as 

the raw data for four participants (participants 2, 4, 5, and 6), with a reduction in 

regression line slope and fit to that regression line when going from air conduction to 

adjusted bone conduction to unadjusted bone conduction. For two other participants 

(participants 3 and 7), the air condition data fell on the steepest slope, followed by the 

unadjusted bone condition and then adjusted bone condition. For these participants, the fit 

to the regression line was similar for air and unadjusted bone conditions, but decreased 

for the adjusted bone condition. For one participant the air and adjusted bone condition 

fell on a similarly sloped line, and the unadjusted bone condition data fell on a shallower 

sloped line, with similar fit to those lines in all conditions. 
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Table 9 

Regression Slope (b) and R2 values for resolved azimuth and resolved elevation data. 

Azimuth 
       
  Slope (b)  R2 

Participant  Air 
Adjusted 

Bone 
Unadjusted 

Bone  Air 
Adjusted 

Bone 
Unadjusted 

Bone 
1  0.83 0.9 0.84  0.85 0.83 0.83 
2  0.98 0.96 0.97  0.94 0.91 0.91 
3  0.89 0.91 0.86  0.85 0.83 0.84 
4  1.06 1.01 0.98  0.94 0.92 0.89 
5  0.91 0.86 0.88  0.86 0.84 0.86 
6  0.97 0.98 0.94  0.93 0.91 0.91 
7  0.99 1.07 1.09  0.95 0.96 0.94 

Average  0.95 0.96 0.94  0.90 0.89 0.88 
Standard 
Deviation   0.08 0.07 0.09   0.05 0.05 0.04 

         
Elevation 

         
  Slope (b)  R2 

Participant  Air 
Adjusted 

Bone 
Unadjusted 

Bone  Air 
Adjusted 

Bone 
Unadjusted 

Bone 
1  0.29 0.3 0.25  0.22 0.2 0.19 
2  0.91 0.56 0.4  0.6 0.38 0.31 
3  0.7 0.54 0.66  0.35 0.26 0.37 
4  1.18 0.91 0.65  0.63 0.49 0.32 
5  0.97 0.6 0.57  0.53 0.31 0.27 
6  0.46 0.28 0.22  0.44 0.28 0.17 
7  0.76 0.46 0.72  0.55 0.35 0.56 

Average  0.75 0.52 0.50  0.47 0.32 0.31 
Standard 
Deviation   0.30 0.21 0.21   0.15 0.09 0.13 

 
 
 

ANOVA tests were conducted on the resolved azimuth and elevation data to see if 

any patterns present in this sample could be generalized to the population. A one-way 

repeated measures ANOVA conducted on the azimuth slope values revealed that there 
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was no effect of condition on resolved azimuth regression slope (F(2,12) = .592, p 

=.568). A similar analysis was done on the pattern of fit for azimuth data to the 

regression line, indexed by Pearson’s r, after undergoing the Fisher’s r to z’ 

transformation. A one-way repeated measures showed that there was an omnibus effect 

of condition on azimuth z’, F(2,12) = 6.56, p = .012. Tukey’s HSD posthoc analyses 

showed that the difference in azimuth z’ between air conduction and adjusted bone 

conduction, as well as between air conduction and unadjusted bone conduction, was 

statistically significant. The difference between the adjusted bone conduction condition 

and unadjusted bone condition, however, was not statistically significant (see Table 10). 

 
 
Table 10 
 
Post-hoc tests for effect of condition on fit of azimuth data to regression line (indexed by 

Pearson’s r, transformed to Fisher’s z’). Critical q(3,12) = 3.77 at .05 significance level. 

Comparison q 

Air – Adjusted Bone 4.07* 

Air – Unadjusted Bone 4.62* 

Adjusted Bone – Unadjusted Bone 1.46 

*p < .05 
 
 
 

A one-way repeated measures ANOVA conducted on the elevation slope values 

revealed that there was a significant omnibus effect of condition on resolved elevation 

regression slope (F(2,12) = 8.83, p =.004). Tukey’s HSD posthoc analyses showed that 

the difference in elevation slope between air conduction and adjusted bone conduction, as 
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well as between air conduction and unadjusted bone conduction, was statistically 

significant. The difference between the adjusted bone conduction condition and 

unadjusted bone condition, however, was not statistically significant (see Table 11). 

 

Table 11 
 
Post-hoc tests for effect of condition on elevation slope. Critical q(3,12) = 3.77 at .05 

significance level. 

Comparison q 

Air – Adjusted Bone 6.46* 

Air – Unadjusted Bone 4.36* 

Adjusted Bone – Unadjusted Bone 0.58 

*p < .05 
 
 

A one-way repeated measures ANOVA conducted on the elevation z’ fit values 

(transformed r values) revealed that there was a significant omnibus effect of condition 

on resolved elevation z’, F(2,12) = 7.64, p =.007. Tukey’s HSD posthoc analyses showed 

that the difference in elevation slope between air conduction and adjusted bone 

conduction, as well as between air conduction and unadjusted bone conduction, was 

statistically significant. The difference between the adjusted bone conduction condition 

and unadjusted bone condition, however, was not statistically significant (see Table 12). 
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Table 12 

Post-hoc tests for effect of condition on fit of elevation data to regression line (indexed by 

Pearson’s r, transformed to Fisher’s z’). Critical q(3,12) = 3.77 at .05 significance level. 

Comparison q 

Air – Adjusted Bone 7.58* 

Air – Unadjusted Bone 3.96* 

Adjusted Bone – Unadjusted Bone 0.27 

*p < .05 
 
 

3.2.3. Summary Localization Performance Statistics 

Reversals 

In the determination of front/back reversals and up/down reversals, the number of 

reversals was counted to compute the percentage of reversals. Percentages were 

computed for each condition using the following equation:  

! 

100*
nreversals

neligible
 

where 

! 

n
reversals

 is the number of reversals counted, and 

! 

neligible  is the number of stimuli 

eligible for reversals (i.e., not including those within the exclusion range). 

 Conducting ANOVAs directly on proportion data presents problems because “the 

scale is bunched up at its extremes relative to its center”, among other issues (Cohen & 

Cohen, 1983, p. 266). An arcsine transformation (2*arcsin(

! 

p  )) makes the data suitable 

for ANOVA treatment by stretching out the tails of the distribution. All reversal 

proportions were given an arcsine transformation before ANOVAs were conducted. 
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Figure 38 shows the rate of front/back reversals for each condition and every 

participant, and Table 13 shows the numerators and denominators used to compute the 

percentages. There were not any apparent effects of condition on front/back reversal rate 

that were consistent across participants, and all values were close to chance performance. 

A one-way repeated measures ANOVA conducted on arcsine-transformed front/back 

reversals showed no significant main effect of condition on arcsine transformed 

front/back reversal rates (F(2,12) = .660, p = .535). 

 
 

 
Figure 38. Front/back reversals for each participant and condition. 
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Table 13 

Numerators and denominators used to compute front/back reversals. 360 trials were 

available in each condition to be eligible for reversals. 

Participant Air 
Adjusted 

Bone 
Unadjusted 

Bone 
1 62/151 83/165 69/142 
2 127/261 95/220 107/221 
3 57/105 65/118 47/92 
4 117/233 118/230 110/219 
5 78/161 54/112 52/101 
6 119/259 113/256 112/247 
7 118/255 153/299 156/305 

 
 
 

Figure 39 shows the rate of up/down reversals for each condition and every 

participant, and Table 14 shows the numerators and denominators used to compute the 

rates.  For all but participant 5, up/down reversal rates were the lowest for air conduction, 

higher for adjusted bone conduction, and highest for unadjusted bone conduction. 

Participant 5 had similar up/down reversals for air conduction and adjusted bone 

conduction. For some participants (1,2,3), the reduction in up/down reversals in the 

adjusted bone condition relative to the unadjusted bone condition was very slight, and 

there was a large increase in errors in the bone conduction conditions relative to the air 

conduction condition. For other participants (4 and 5), the reduction in reversals in the 

adjusted bone condition relative to the unadjusted bone condition was quite large, and 

there was only a small increase in reversals for the adjusted bone condition relative to the 

air condition.  
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Figure 39. Up/down reversals for each participant and condition. 
 
 
 
Table 14 

Numerators and denominators used to compute up/down reversals. 360 trials were 

available in each condition to be eligible for reversals. 

Participant Air 
Adjusted 

Bone 
Unadjusted 

Bone 
1 17/102 37/117 32/98 
2 5/189 14/137 13/107 
3 35/152 50/144 59/167 
4 24/199 26/178 29/143 
5 23/168 16/125 22/118 
6 7/106 13/87 15/77 
7 11/171 41/139 94/195 

 
 

A one-way repeated measures ANOVA conducted on arcsine-transformed 

up/down reversal rates showed a significant main effect of condition on arcsine 
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transformed up/down reversal rates (F(2,12) = 12.11, p =.001). Tukey’s HSD posthoc 

analyses showed statistically significant differences between all comparisons: air 

conduction - adjusted bone conduction, air conduction - unadjusted bone conduction, and 

adjusted bone conduction - unadjusted bone conduction (see Table 15). 

 
 
Table 15 
 
Post-hoc tests for effect of condition on arcsine transformed up/down reversals. Critical 

q(3,12) = 3.77 at .05 significance level. 

Comparison q 

Air – Adjusted Bone -4.78* 

Air – Unadjusted Bone -5.18* 

Adjusted Bone – Unadjusted Bone -3.83* 

*p < .05 

 

Error 

An array of absolute azimuth error values for each condition was created by 

finding the absolute difference between each stimulus azimuth and response azimuth. The 

mean and standard error of each array was then calculated. The elevation error was 

computed in an analogous manner. 

Figure 40 shows that for all participants the mean azimuth error was more for the 

bone conditions than for the air conditions. The pattern of results between the two bone-

conduction conditions was highly variable across participants: Some had similar error for 

both (1,2,3,6), others had more for the unadjusted bone condition (4,7), and one 

participant had more for the unadjusted bone condition (5). 



 91 

 
 
 

 
Figure 40. Azimuth error (degrees) for each participant and condition. Error bars reflect 
one standard error above and below the mean. 
 
 
 

A one-way repeated measures ANOVA conducted on azimuth error showed a 

significant main effect of condition (F(2,12) = 10.54, p = .002). Tukey’s HSD posthoc 

analyses showed statistically significant differences for the air conduction - adjusted bone 

and air - unadjusted bone comparisons, but not the adjusted bone - unadjusted bone 

comparison (see Table 16). 
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Table 16 

Post-hoc tests for effect of condition on azimuth error. Critical q(3,12) = 3.77 at .05 

significance level. 

Comparison q 

Air – Adjusted Bone -8.52* 

Air – Unadjusted Bone -5.53* 

Adjusted Bone – Unadjusted Bone -1.07 

*p < .05 
 
 

Figure 41 shows the average elevation error for each condition and every 

participant. There was not any apparent effect of condition that is consistent across 

participants. A one-way repeated measures ANOVA conducted on arcsine-transformed 

front/back reversals showed no significant main effect of condition on arcsine 

transformed front/back reversal rates (F(2,12) = 2.68, p =.109). 
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Figure 41. Elevation error (degrees) for each participant and condition. Error bars reflect 
one standard error above and below the mean. 
 
 

Bias 

A metric for bias was computed for each plane of judgment (azimuth and 

elevation) to understand any tendencies to respond more or less lateral than the stimulus, 

and more or less elevated than the stimulus. To compute the signed lateralization error, 

first the angular distance between the stimulus and the nearest sagittal plane azimuth (0 

degrees for front, 180 degrees for back) was determined. Then this was repeated for the 

response. The signed lateralization error value was computed by subtracting each 

response distance from each stimulus distance, giving a difference in distance from the 

closest sagittal plane. This direction of subtraction creates a negative value for responses 

that are less lateralized than the stimulus, and a positive value for responses that are more 

lateralized than the stimulus, regardless of whether the stimulus and response are in the 
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same hemisphere (recall that trials with stimuli or responses within 15 degrees were not 

eligible for reversal resolution). The signed lateralization error was computed for every 

stimulus-response pair, to create an array of values for each condition. The mean and 

standard error of each array was then computed. 

Figure 42 shows that except for participant 7, the participants had signed 

lateralization error in the unadjusted bone condition that was similar to or higher than 

(more lateralized) the adjusted bone condition, and the air condition signed lateralization 

error was typically lower than in the bone conditions. Irrespective of the trend, nearly all 

signed lateralization error values were positive except for participant 7, and thus there 

was a general bias to make responses more lateral than the stimulus. Participant 7 showed 

an opposite trend of the others’ general trend: the air condition had the lowest absolute 

signed lateralization error, the error increased in the negative direction for the adjusted 

bone condition, and increased further in the negative direction for the unadjusted bone 

condition. Thus, participant 7’s responses were less lateralized than the stimulus for the 

bone-conduction conditions, and the bias was strongest for the unadjusted bone 

condition. 
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Figure 42. Signed lateralization error (degrees) for each participant and condition. Error 
bars reflect one standard error above and below the mean. 
 
 
 

A one-way repeated measures ANOVA conducted on signed lateralization error 

showed no effect of condition (F(2,12) = .71, p = .444). Because of the categorically 

different trend for participant 7, the ANOVA was run again with this participant 

excluded. This analysis showed a statistically significant main effect of condition 

(F(2,10) = 6.71, p = .014) on signed lateralization error. Tukey’s HSD posthoc analyses 

showed statistically significant differences for the air conduction - unadjusted bone and 

adjusted bone - unadjusted bone comparisons, but not the air - adjusted bone comparison 

(see Table 17). 
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Table 17 

Post-hoc tests for effect of condition on signed lateralization error, with participant 7 

excluded. Critical q(3,10) = 3.88 at .05 significance level. 

Comparison q 

Air – Adjusted Bone -2.90 

Air – Unadjusted Bone -4.32* 

Adjusted Bone – Unadjusted Bone -3.89* 

* p < .05 
 
 

The signed elevation error was computed by subtracting the stimulus elevation 

from response elevation. This creates an error signed positive if the response is biased 

upward from the stimulus, and an error signed negative of the response is biased 

downward from the stimulus, regardless of the hemisphere. The signed elevation error 

calculation was done for every stimulus-response pair, to create an array of values for 

each condition. Then the mean and standard deviation of this array was computed. 

Figure 43 shows that the air conduction condition had higher signed elevation 

error than the bone conditions for all participants. For most participants (2,3,4,5,7), the 

signed elevation error was the highest for air conduction, lower for adjusted bone 

conduction, and lowest for unadjusted bone conduction. This shows a relative downward 

bias, where the response is consistently lower than the stimulus. For participants 1 and 6, 

the unadjusted bone signed elevation error was less than the adjusted bone elevation 

error. 
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Figure 43. Signed elevation error (degrees) for each participant and condition. Error bars 
reflect one standard error above and below the mean. 
 
 
 

A one-way repeated measures ANOVA conducted on signed elevation error 

showed a statistically significant main effect of condition (F(2,12) = 15.01, p =.001). 

Tukey’s HSD posthoc analyses showed statistically significant differences for the air 

conduction - adjusted bone and air - unadjusted bone comparisons, but not the adjusted 

bone - unadjusted bone comparison (see Table 18). 
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Table 18 

Post-hoc tests for effect of condition on signed elevation error. Critical q(3,12) = 3.77 at 

.05 significance level. 

Comparison q 

Air – Adjusted Bone 6.48* 

Air – Unadjusted Bone 5.77* 

Adjusted Bone – Unadjusted Bone 2.50 

* p < .05 

 

Variability 

The azimuth standard deviation was computed by taking the standard deviation of 

azimuth responses for a given stimulus location, across trials at that location, within a 

condition. The azimuth standard deviation was computed for every stimulus location, to 

create an array of values for each condition. Then the mean and standard error of each 

array was computed. The elevation standard deviation was computed with elevation 

responses in an analogous manner. 

Figure 44 shows the average azimuth standard deviation for each condition and 

every participant. Given the large error bars, there is no apparent effect of condition that 

is consistent across participants. A one-way repeated measures ANOVA conducted on 

average azimuth standard deviation showed no significant main effect of condition 

(F(2,12) = 2.71, p = .107). 
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Figure 44. Average azimuth standard deviation for each participant and condition. Error 
bars reflect one standard error above and below the mean. 
 
 

Figure 45 shows that there is no apparent effect of condition on elevation standard 

deviation that is consistent across participants. A one-way repeated measures ANOVA 

conducted on average elevation standard deviation showed no significant main effect of 

condition (F(2,12) = 0.62, p = .554). 
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Figure 45. Average elevation standard deviation for each participant and condition. Error 
bars reflect one standard error above and below the mean. 
 
 

Maximum Judgments 

The maximum lateralization statistic was the absolute value of the most lateral 

azimuth judgment given across all trials within a condition. Figure 46 shows that there 

was virtually no variation in the maximum azimuth judgment between conditions. The 

maximum lateralization values for all participants were exactly or close to 90 degrees, the 

maximum lateralized stimulus. Note that the possible maximum lateralization scale 

ranges from zero to 180 degrees, because of the azimuth coordinate system (left versus 

right hemisphere was ignored). Thus,  any value below or above 90 degrees is less than 

maximally lateralized, and values greater than 90 degrees decrease in lateralization as 

their distance from 90 degrees increases.  
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Figure 46. Maximum lateralized azimuth response for each participant and condition. 
 
 
 

The maximum elevation was the highest elevation response across all trials within 

a condition. Figure 47 shows the maximum elevation for each condition and every 

participant. The maximum elevation is similar across conditions for three participants 

(2,3,5), and shows a decreasing trend going from air to adjusted bone to unadjusted bone 

for three participants (1,4,7). Participant 6 shows a similar decrease in maximum 

elevation for the bone conditions, but with similar maximum elevation for the two bone 

conditions. There seems to be the most variability in maximum elevation across 

participants for the unadjusted bone condition. 
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Figure 47. Maximum elevation response for each participant and condition. 
 
 
 

A one-way repeated measures ANOVA was conducted on maximum elevation, 

and Mauchley’s test of sphericity showed that equal variances could not be assumed 

(W(2) = .071, p = .001). Geisser-Greenhouse corrections were made to the degrees of 

freedom to correct for the positive alpha bias that occurs with unequal variances. With 

this correction the ANOVA showed that there was not a statistically significant effect of 

an omnibus effect of condition (F(1.04,6.22) = 2.41, p = .17). Although this is a null 

effect, this is one statistic where the population is likely to be saturated around 90 

degrees, and thus not be normally distributed. 

The minimum elevation was the lowest elevation response across all trials within 

a condition. Figure 48 shows that there were not any apparent effects of condition on 

minimum elevation that was consistent across participants. A one-way repeated measures 
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ANOVA was conducted on minimum elevation, and Mauchley’s test of sphericity 

showed that equal variances could not be assumed (W(2) = .293, p = .047). Geisser-

Greenhouse corrections were made to the degrees of freedom to correct for the positive 

alpha bias that occurs with unequal variances. With this correction the ANOVA showed 

that there was not a statistically significant effect of an omnibus effect of condition 

F(1.17,7.03) = 0.88, p = .398. This is again a situation where the population’s statistic is 

likely to be saturated around 90 degrees, and thus not be normally distributed – although 

again this is a null effect. 

 

 
Figure 48. Minimum elevation response for each participant and condition. 
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3.2.4. Subjective Ratings 

The subjective ratings were computed by recording the horizontal pixel position 

of the cursor selected on the continuous rating scale, and subtracting from it the 

horizontal pixel position at the minimum judgment. This created a scale that ranges 

between 0 (the left-most position on the line) and 464 (the right-most position on the 

line). 

Figure 49 shows that there were not any apparent effects of condition on 

externalization rating that was consistent across participants. A one-way repeated 

measures ANOVA was conducted on externalization rating, and Mauchley’s test of 

sphericity showed that equal variances could not be assumed (W(2) = .148, p = .008). 

Geisser-Greenhouse corrections were made to the degrees of freedom to correct for the 

positive alpha bias that occurs with unequal variances. With this correction the ANOVA 

showed that there was not a statistically significant effect of condition F(1.08,6.48) = 

1.09, p = .340. 
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Figure 49. Subjective externalization rating for each participant and condition. Dotted 
line shows middle of response scale (labeled “surface of your head”). Error bars reflect 
one standard error above and below the mean. 
  
 
 

Figure 50 shows that there were not any apparent effects of condition on 

externalization rating that was consistent across participants. A one-way repeated 

measures ANOVA conducted on diffuse rating showed that there was not a statistically 

significant effect of condition F(2,12) = 1.08, p = .371. 
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Figure 50. Subjective diffuse rating for each participant and condition. Dotted line shows 
(unlabeled) middle of response scale. Error bars reflect one standard error above and 
below the mean. 
 

3.2.5. Individualized HRTFs 

Scatter Plot 
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Figure 51. Scatter plot for P6, with individualized HRTFs. For azimuth, the air condition 
baseline shows a strong fit to the diagonal, besides the large amount of front/back 
reversals on the cross-diagonal. This pattern seemed to have more points fall closer to the 
diagonal than the pattern seen with the generalized HRTFs (see Figure 22). For the 
adjusted and unadjusted bone azimuth, the response patterns are similar but get 
progressively more variable, with a binary response pattern starting to appear in the 
unadjusted bone condition. This progressive decline in performance is more severe than 
the pattern seen with generalized HRTFs. For elevation, the air condition baseline data 
fall on a steeply sloped diagonal in the top hemi-field, but few stimuli are perceived in 
the lower hemi-field (just as with the generalized HRTFs). This pattern is echoed in the 
slope of the regression line (.36) and fit of the data to that line (R2 = .28) – both of these 
values are reduced from the slope and R2 values with generalized HRTFs (.41 and .37, 
respectively). When going from the air condition to the adjusted bone then unadjusted 
bone condition, the data points fall on a slightly shallower sloped line and become more 
spread out around that line, as indicated by the monotonically decreasing regression slope 
and R2 value – following the trend of the generalized HRTFs (although the individualized 
trend is not as strong).  
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Figure 52. Scatter plot for P6, using individualized HRTFs, with front/back errors 
adjusted resolved and wrap-around artifact removed. For azimuth, the air condition 
baseline data fall on a steeply sloped regression line (b=.97) with a high fit to that 
regression line (R2 = .92), similar to the  results seen with the generalized HRTFs. 
Relative to the air condition, the regression for the adjusted bone and unadjusted bone 
shows similar slope and fit. This departs from the generalized results, where the 
unadjusted bone condition showed a slight decline in slope. For elevation, the air 
condition data fall on a regression line with low slope (b=.42) and have a moderate fit to 
that line (R2 = .38). These values are slightly lower than those seen with the generalized 
HRTFs. When going from the air condition to the adjusted bone then unadjusted bone 
condition, the data points fall on a shallower sloped line and become more spread out 
around that line, as indicated by the monotonically decreasing regression slope and R2 
value. This is the same trend seen with the generalized HRTFs. 
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Summary Localization Performance Statistics 

Descriptive statistics that showed trends with the generalized data, show a trend 

for the individualized, or show a difference between individualized and generalized 

HRTFs, will be plotted and discussed here. Other descriptive statistics will be provided in 

Table 19 at the end of this section. The individualized results were generally similar to 

the generalized results, but the subtle differences will be discussed here. 

Figure 53 shows the front/back reversals for participant 6, when using 

individualized and generalized HRTFs. With the individualized HRTFs, the adjusted 

bone reversal rate was higher than the air and unadjusted bone reversal rates, which were 

similar. With the generalized HRTFs, however, the rates were quite similar across 

conditions. In addition, the air condition (baseline) reversal rate was slightly elevated for 

with the generalized HRTFs, compared to the air condition with the individualized 

HRTFs.  

 

 
Figure 53. Front/back reversals for P6, with individualized and generalized HRTFs.  
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Figure 54 shows the up/down reversals for participant 6, when using 

individualized and generalized HRTFs. Although the generalized results show an 

increasing up/down reversal trend going from the air to adjusted bone to unadjusted bone 

condition, the individualized results show similar up/down reversal values for air and 

unadjusted bone condition, and less for the adjusted bone condition. The air condition 

(baseline) reversal percentage was higher with the individualized HRTFs than with the 

generalized HRTFs. 

 

 
Figure 54. Up/down reversals for P6, with individualized and generalized HRTFs.  
 
 
 

Figure 55 shows that with both the individualized and generalized HRTFs, the air 

condition had a reduced azimuth error relative to the two bone conditions, which had 

similar azimuth error. With individualized HRTFs, there was a slightly increased azimuth 

error in the air condition relative to the air condition azimuth error with the generalized 

HRTFs. 
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Figure 55. Azimuth error for P6, with individualized and generalized HRTFs. Error bars 
reflect one standard error above and below the mean. 
 
 
 

Figure 56 shows that with the generalized HRTFs, the elevation error showed an 

increasing trend going from the air to adjusted bone to unadjusted bone condition, but the 

individualized results show similar elevation error across conditions. The elevation error 

values were in similar ranges for individualized and generalized HRTFs. 

 

 
Figure 56. Elevation error for P6, with individualized and generalized HRTFs. Error bars 
reflect one standard error above and below the mean. 
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Figure 57 shows that for both HRTF sets, the adjusted bone and unadjusted bone 

condition had similar signed elevation errors, and the air condition had increased signed 

elevation error. Regardless of condition, the signed elevation error was always higher for 

the individualized HRTFs than for the generalized HRTFs. 

 

 
 Figure 57. Signed elevation error for P6, with individualized and generalized HRTFs. 
Error bars reflect one standard error above and below the mean. 
 
 
 

Figure 58 shows that signed lateralization error was relatively similar across 

conditions for the individualized HRTF, but that the signed lateralization error was 

considerably lower in the air condition, compared to the bone conditions for the 

generalized HRTF.  
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Figure 58. Signed lateralization error for P6, with individualized and generalized HRTFs. 
Error bars reflect one standard error above and below the mean. 
 
 
 

Figure 59 shows that with the individualized HRTFs, the minimum elevation 

judgment was similar for the two bone conditions and lower for air. With the generalized 

HRTFs, however, the minimum elevation judgment was similar for air and unadjusted 

bone, and lower for adjusted bone. The minimum elevation values were generally lower 

for the individualized than for the generalized HRTFs. 
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Figure 59. Minimum elevation for P6, with individualized and generalized HRTFs. 
 
 
 

Figure 60 shows that the patterns of maximum elevation judgments across 

conditions were slightly different with individualized and generalized HRTFs. With 

individualized HRTFs, the maximum elevation judgment was similar for the air and 

adjusted bone condition, and slightly lower for unadjusted bone. With the generalized 

HRTFs, however, the maximum elevation judgment was similar for the two bone 

conditions, and slightly higher for the air condition. The maximum elevation values were 

slightly higher with the generalized HRTFs than with the individualized HRTFs in the air 

and unadjusted bone conditions, and slightly lower for the adjusted bone condition. 
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Figure 60. Maximum elevation for P6, with individualized and generalized HRTFs.  
 
 
 

Figure 61 shows that there were only very subtle differences between the 

externalization rating for individualized and generalized HRTFs, but with very little 

variability in judgments. The ratings were similar across conditions with the 

individualized HRTFs, but for the generalized HRTFs the air condition rating was 

slightly higher than the bone conditions (which were rated similarly). 

 
Figure 61. Externalization rating for P6, with individualized and generalized HRTFs. 
Error bars reflect one standard error above and below the mean. 
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Figure 62 shows that the results for the diffuse rating were similar to the results 

for the externalization rating: the diffuse ratings were similar across conditions with the 

individualized HRTFs, but the air condition diffuse rating was slightly higher than the 

similarly rated bone conditions. 

 
 

 
Figure 62. Diffuse rating for P6, with individualized and generalized HRTFs. Error bars 
reflect one standard error above and below the mean. 
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Table 19 

Additional descriptive statistics for individualized HRTFs 

Condition Azimuth Standard Deviation 

 Mean*  Standard Error† 

 Individualized Generalized  Individualized Generalized 

Air 28.8138 29.6315  4.7981 5.6249 

Adjusted Bone 35.7809 31.0134  5.0103 5.0374 

Unadjusted Bone 33.2750 30.1946   4.5457 5.0633 

      

 Elevation Standard Deviation 

 Mean*  Standard Error† 

 Individualized Generalized  Individualized Generalized 

Air 13.3070 14.7136  1.3065 1.5209 

Adjusted Bone 12.6403 14.3173  1.1407 0.9776 

Unadjusted Bone 12.4854 15.2812   1.1207 1.1301 

      

 Maximum Lateralization Judgment 

  Individualized  Generalized  

Air  90  -90  

Adjusted Bone  90  90  

Unadjusted Bone   90   90   

*This is the mean of the azimuth standard deviation, across locations; see Section 3.2.3 
for a detailed explanation. 
†This is the standard error of the azimuth standard deviation, across locations; see 
Section 3.2.3 for a detailed explanation. 
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CHAPTER 4 
 

DISCUSSION 
 

4.1. Predictions and Theoretical Basis 

 
 Predictions about the effect of the conditions can be made based on the Limited-

Fidelity Model of Spatial Audio Through Bone Conduction proposed in the author’s 

preliminary exam paper. This model states the feasibility of using BCTs to deliver spatial 

audio, with some limitations, through four components: 

A) The bone-conduction pathway is a leaky dichotic system 

B) Air-conduction filters are ill suited for bone conduction pathway 

C) The bone-conduction pathway is measurable 

D) Any bone-conduction adjustment function will be imperfect in its effectiveness, 

caused by properties of the bone-conduction pathway (e.g., sensitivity to head and 

jaw movements). 

Component B, that air-conduction filters are ill-suited for the bone-conduction 

pathway, predicts that in study 2 the unadjusted bone condition would have the worst 

performance for aspects of localization in the up/down and front/back dimension. 

Specifically, the spectral cues designed to be delivered through the air-conduction 

pathway would be altered by the bone-conduction pathways, and thus produce filters that 

were not effective. This would produce an increase in localization error for aspects of 

localization (higher rate of up/down and front/back reversals, and increased elevation and 

azimuth error). 

Component C, that the bone-conduction pathway is measurable, predicts that 

study 1 would give a measurement of the bone-conduction pathway for each participant 
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that could be used to make adjustments for the pathway, thus restoring the inappropriate 

spectral cues invoked by the bone-conduction pathway. This leads to the prediction that 

the adjusted bone condition would have improved performance over the unadjusted bone 

condition for the error aspects of localization. However, component D, that any BAF will 

have imperfect effectiveness, predicts that the adjusted bone condition would still not 

have as good of performance as the air condition on all aspects of localization. This 

includes all the error metrics of localization, as well as greater variability in the bone-

conduction conditions than in the air-conduction condition. Component A, that the bone-

conduction pathway is a leaky dichotic system, contributes to the prediction by 

component D, and also predicts that the maximum lateralization will be lower for both 

bone conditions. Together, these predictions result in the general prediction that 

performance will be best in the air condition, decreased somewhat in the adjusted bone 

condition, and worst in the unadjusted bone condition. 

4.2. Effects Caused by Spectral Cues 

The effect of delivering spatial audio through the bone-conduction pathway and 

the effect of the BAF was most clearly seen in the elevation responses, and the elevation 

data will be discussed before any azimuth data are considered. The pattern of the air 

condition having the best elevation performance, followed by adjusted bone condition, 

and then finally unadjusted bone condition, manifested itself in several ways. First, the 

regression line fit to the raw elevation responses showed a decrease in slope and R2 values 

when going from air to adjusted bone to unadjusted bone for all but one participant. The 

shared decrease of slope and R2 values showed that, on average, the responses became 

less dependent on the stimulus when going from air to adjusted bone to unadjusted bone. 



 120 

A decrease in slope with constant R2 values would have indicated a compression of 

elevation space. However, with both values decreasing, the slope effect is likely driven at 

least partially by the same cause of the reduction in R2 : a decrease in accuracy. 

For most participants, the difference in slope between the air and adjusted bone 

condition was larger than the difference between adjusted bone and unadjusted bone 

conditions. The same was true for the R2 statistic. For other participants, the difference in 

slope and R2 between the two bone conditions was greater, or the differences were 

similar. 

When the up/down confusions were resolved and then the regression lines were fit 

to the elevation data, the air > adjusted bone > unadjusted bone condition pattern of slope 

and R2 values held for four participants. This showed that for these participants, local 

error in elevation judgments (separate from the up/down reversals) was at least a partial 

cause of the slope and fit regression trends. For the other participants, the effect no longer 

occurred, suggesting it was primarily driven by up/down reversals.  

The decrease in localization performance demonstrated by the raw data and 

regression analyses were mostly supported in the elevation aggregate statistics. For all 

but one participant, the up/down reversal rate was highest for the unadjusted bone 

condition, lower for the adjusted bone condition, and then lowest for the air condition. 

For most participants, the difference in reversal rate between the air and adjusted bone 

conditions was greater than the difference in reversal rate between adjusted bone and 

unadjusted bone conditions. The elevation error showed no consistent effects of condition 

consistent across participants, suggesting that the majority of elevation effects were 

caused by reversals rather than local error. The general finding of the worst elevation 
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performance in the unadjusted bone condition is consistent with Langedijk and 

Bronkhorst’s (2002) findings that removing spectral cues increases elevation error 

(up/down reversals were not analyzed separately by Langedijk and Bronkhorst). 

Presumably administering the unadjusted bone condition is acting on the same 

mechanisms investigated by Langendijk and Bronkhorst, but is altering the shape rather 

than removing the cues. The elevation findings are also consistent with preliminary tests 

of localization with BCTs done by Schonstein and colleagues (2008). Together, these 

findings show that the BAF was effective in restoring the spectral cues degraded by 

delivering spatial audio through the bone-conduction pathway.  

It was noted that in most cases the effect of the bone conduction pathway was 

greater than the effect of the BAF (as evidenced by the difference between air and 

adjusted bone performance being greater than the difference between adjusted and 

unadjusted bone performance). In other (less common) cases, the effect of the BAF was 

greater than or similar to the effect of the bone-conduction pathway (as evidenced by the 

difference between the two bone conditions being equal to or greater than the difference 

between the air condition and adjusted bone condition). By itself, the finding of greater 

performance cost associated with the bone-conduction pathway could suggest that aspects 

of the bone-conduction pathway that cannot be addressed with spectral filtering are the 

cause for this effect. The lack of effects for variability and maximum lateralization 

(which will be discussed in more detail later), however, prevent the conclusion that the 

performance cost is caused by aspects of the pathway that cannot be addressed with 

spectral filtering. Thus, this finding suggests that the biggest performance cost is caused 

by spectral cue adjustments not captured by the BAF, and that a more accurate BAF 
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could produce an even greater improvement in localization performance in the elevation 

plane. Relatedly, perhaps the participants that had a greater effect caused by the BAF 

happened to produce more accurate BAFs. On the other hand, some aspects of the BAF 

shape suggest that a perfectly accurate BAF may still produce similar results. 

Specifically, the biggest changes in spectral shape within participants and on average 

were not in the frequency range most important for spatial hearing, between 8 and 16 kHz 

(Langendijk & Bronkhorst, 2002).  

In addition to error, the difference in spectral cues implemented by the conditions 

also led to an effect on judgment bias in the elevation plane. Specifically, most 

participants showed a downward bias when going from the air to adjusted bone to 

unadjusted bone condition, presumably caused by the degradation in spectral cues. 

Relatedly, three participants showed a trend of a reduction in the maximum elevation 

perceived when going from air to adjusted bone to unadjusted bone condition, again 

presumably caused by degradation in spectral cues. How spectral cues could cause a 

monotonic trend in downward bias and limits in maximum elevation is not clear. In his 

seminal work on the “boosted band” theory of median localization, Blauert (1969/1970) 

showed that the frequency of narrowband noises (independent of location) can drive 

localization in the median plane. Perhaps a distortion of the spectral cues that was 

consistent across participants tapped into frequency bands corresponding to stimuli lower 

in the median plane. Despite the relative downward trend found in the present study, all 

participants showed a positive elevation bias in the air-conduction condition, confirming 

the “elevation illusion” with generalized HRTFs shown by Folds (2006).  

Despite all of these effects of condition on elevation that are presumably driven 
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by spectral cues, few effects were found in the azimuth plane of judgment. The raw 

azimuth plot and front/back reversal rate showed no effect of condition, but this was 

likely caused by the near-chance baseline levels of front/back reversals. The raw azimuth 

plot did show a trend for some participants of less stimuli being perceived in front on the 

bone conditions, relative to the air condition. Although this perceptual effect probably 

had something to do with a difference in spectral features (caused by some BAF 

measurement error), it is not clear why this specific effect occurred. Once front/back 

reversals were resolved, there was also less error in the air condition relative to the two 

bone conditions. This effect could be caused by either spectral cues or differences in 

lateralization driven by the pathway.  

It may be noted that there were effects in the regression data not present in the 

aggregate data. For example, there were still some effects of condition on elevation after 

up/down reversals were resolved in the regression analysis, but not in the aggregate 

analysis. In another case, there was an effect of condition on azimuth after front/back 

reversals were resolved in the regression analysis, but not in the aggregate analysis. This 

can be explained by the stimuli locations, which were distributed equally in spherical 

space. Plotted in linear space, such a distribution of locations shows unequal spacing 

along the diagonal (see Figure 63). When regression analyses were used, a linear scale 

was assumed and the slope and fit were more sensitive to the endpoints of the diagonal. 

The summary statistics, on the other hand, were averaged across locations without regard 

to their position on the diagonal. 
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Figure 63. Plot of stimuli locations. Note the unequal spacing along the diagonal, which 
could explain the slight differences found between regression analyses and aggregate 
statistics. 
 
 
 The change in spectral cues invoked by the conditions should have produced 

changes in subjective ratings of externalization and diffuseness, since these aspects of the 

stimulus are likely to be affected by the spectral shape of the stimulus. A complication 

with these ratings is that a single judgment was made at the end of a block that required a 

lot of concentration to complete. There could have often been differences between trials 

in these aspects of the stimulus, which would be difficult for the participant to “average” 

across. Furthermore, the cognitive resources required to complete the localization task 

from trial to trial could have prevented participants from accessing any aggregate 

information about the externalization or diffuseness of the stimuli. 

4.3. Effects Caused by the Inherent Properties of Bone Conduction 

In addition to error and bias, an effect of condition on variability and maximum 

judgments was predicted, caused by properties of the bone conduction pathway. There 

was no evidence in the aggregate variability data for instability in the pathway causing 

changes in the physical cues at the cochlea. There was also no evidence in these data for a 
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limit in maximum lateralization caused by reduced interaural attenuation in the bone-

conduction pathway. Moreover, all but one participant had a bias towards perceiving the 

response to be more lateralized than the stimulus in the bone-conduction conditions, 

relative to the air condition. Despite the ears being plugged, there is a possibility that this 

was partially caused by air-conducted leakage. However, the attenuation provided by the 

earplugs was probably greater than the air-conducted leakage, which makes this unlikely. 

Another possible cause of the lateralization bias was the air-conduction component of the 

bone-conduction pathway. It is important to note that this conceptualization of 

lateralization assumes the localization space has some sort of spherical shape. If there 

were a one-dimensional non-spherical localization space (i.e., a line), a correct vector 

judgment of stimuli with different interaural differences would always be +/- 90 degrees. 

4.4. Individualized HRTF Replication 

Studies 1 and 2 were replicated with individualized HRTFs on participant 6, which 

was designed to test the effect of the conditions in the context of the highest-fidelity 

V3DAD display possible. The individualized HRTF test did not provide a higher-fidelity 

baseline to test with these conditions, and the effects were largely the same as with the 

generalized HRTFs. There are several possible reasons for not attaining the performance 

improvement found in the literature with individualized HRTFs. First, the directional-

transfer function method of creating V3DADs relies on the diffuse-field response of the 

headphones to replicate the common HRTF component. By relying on what has been 

standardized to be a “diffuse field response,” the DTF system is effectively relying on a 

generalized common HRTF component function. This is in contrast to the more 

conventional HRTF method, which includes an individualized measurement of pathways 
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captured by the common component (e.g., headphone-to-eardrum response). Plotting of 

the diffuse-field frequency response and the common HRTF component in Appendix D 

shows that there were considerable differences between the common component and the 

diffuse-field frequency response at frequencies above 5 kHz. This disparity was likely to 

be a large contributor to the low performance with the individualized HRTFs. Related to 

the common component correction is the fact that the speaker and microphone responses 

were thought to be approximately flat and thus were not corrected for. The degree to 

which these responses deviated from a perfectly flat response could have contributed to 

the low individualized HRTF performance. 

Second, participant six had never been previously tested with individualized 

HRTFs, so the listener’s best possible performance is not known. Third, although the 

response method seemed to work well, this specific implementation has not been used in 

previous research, so it could have influenced the results. Overall, there are numerous 

other unknown effects and interactions that could have been caused by using a 

combination of measurements, processing, response, and listener that have not been 

previously verified. The specific HRTF measurement system used, for example, was not 

previously used with the DTF methodology, the same listener, or the computer-model 

response method. 

4.5. Baseline Performance Relative to Previous Literature 

It may be noted that the air condition baseline results were not as good as the 

Middlebrooks studies would have predicted. However, the analysis shown in those papers 

departed greatly from the analysis shown here. First, the horizontal polar system was 

used by Middlebrooks and colleagues (1999b; 2000). Relatedly, data analysis was 
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confined to 30 degrees from the vertical midline, to avoid the compression of polar error 

at far laterals (Middlebrooks, 1999b). This resulted in a lower count of front/back 

confusions than other conventional definitions (Middlebrooks, 1999b). Furthermore, 

reversals were not counted unless there was a difference between polar (front/back, 

up/down) stimulus and response that was greater than 90 degrees (“quadrant errors”) 

(Middlebrooks, 1999b, 2000). These differences in analyses prevent direct comparison of 

baseline values. In addition, there were differences in the methodology of the studies: 

Middlebrooks’ studies had a different response method (the listener pointed their nose to 

the stimulus), and did not have a bandpass filter for the virtual stimuli. 

These baseline reversal rates can still be compared to investigations that used 

similar coordinate systems and response metrics that investigated generalized HRTFs. 

Many of the studies investigating generalized HRTFs used ordinal responses that prevent 

comparison with the present data, or did not explicitly state front/back reversal rates. A 

study by Wightman and colleagues (1993), however, provides a suitable comparison. 

Using HRTFs from another individual Wightman and colleagues found that 

inexperienced listeners (like the ones in the present study) had on average 31 percent 

front/back reversals, with values ranging from 10 to 50 percent. This is generally a lower 

rate than what we found in our study. One obvious reason for this difference was that 

they did not have an exclusion range like we did. Analysis on the data from the present 

study without an exclusion range, however, still an average front/back reversal rate of 48 

percent. Other causes for the differences include different locations used in Wightman et 

al. (1993), the bandpass cutoff frequencies (200 Hz and 14 kHz), the response method 

(verbal response), and the specific HRTF used. Another difference was that they used the 
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original HRTF subjects’ headphone-to-eardrum transfer function, rather than the diffuse 

field response used in the present study. Wenzel and colleagues’ (1993) study showed 

up/down reversal rate was on average 18 percent, ranging from 7 to 32 percent. This is 

generally similar than the findings in our study, which used an elevation exclusion range 

of 15 degrees. Without that exclusion range, though, the average up/down reversal rate 

was 23 percent, ranging from 14 to 34 percent. 

4.6. Contributions, Conclusions, and Implications 

The primary contribution of this research was the first known test showing that a 

bone-conduction adjustment function can be used to improve spatial audio performance. 

More generally, this research provided a unique comprehensive test of auditory 

localization through bone conduction. This study showed that a BAF based on equal-

loudness adjustments can restore spectral cues and allow effective localization in the 

elevation plane through the reduction of up/down reversals. These findings can now be 

added to the body of evidence against the popular belief that spatial audio cannot be 

effectively delivered through bone-conduction hearing. This study also showed, however, 

that there is a performance cost associated with using bone conduction that may not be 

able to be overcome through use of a BAF. In addition, this study also provided a test of a 

unique response method that allows continuous judgment of both azimuth and elevation 

using only a personal computer and a widely-used software program (MATLAB). 

Although a full evaluation of this method would require side-by-side comparisons with 

other more established response methods, these data show that the method is likely to be 

suitable for a variety of applications. This response method can provide an easy way for 

other researchers to rapidly collect localization responses. 



 129 

The findings from the present study extend the findings of previous research 

investigating related aspects of bone-conducted spatial audio. The present findings 

replicate and extend the findings showing lateralization of sounds delivered through bone 

conduction (e.g., Jahn & Tonndorf, 1982; Kaga, et al., 2001; Stanley & Walker, 2006; 

Walker & Lindsay, 2005; Walker, Stanley, Iyer, et al., 2005). The present studies show in 

addition to lateralization, changes in elevation are also possible. The present studies also 

extend the findings of Macdonald and colleagues (2006), showing that once frequencies 

where spectral cues lie are included, and noise is not delivered in the environment, there 

indeed is a difference between air-conducted and bone-conducted spatial audio (as shown 

by Schonstein, et al. (2008)).  

This has implications for the design of BCTs that are intended to deliver spatial 

audio, showing that a built-in correction filter could improve their use. The present 

studies also extend Stanley’s (2007) initial investigation into building a BAF, by testing 

an alternate method and verifying the efficacy of the BAFs. The present findings also 

show that the difficulties associated with the phase component of the BAFs can be 

avoided while still obtaining an effective BAF, allowing a more efficient measurement of 

a BAF. It is of course conceivable that the addition of phase manipulation to the BAF 

could produce an added benefit – but it is not necessary for a measurable benefit in 

performance. 

The results of this study provided theoretical contributions by testing the Limited-

Fidelity Model of Bone-Conducted Spatial Audio proposed by the author. The strong 

reduction in elevation performance when going from air to adjusted bone conduction to 

unadjusted bone conduction gave support for three components of the Limited-Fidelity 
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Model of Bone-Conducted Spatial Audio. The worst performance occurring in the 

unadjusted bone condition showed that air-conduction filters are ill-suited for the bone-

conduction pathway (component B). The relative improvement in performance seen in 

the adjusted bone condition showed that the bone-conduction pathway is measurable 

(component C) – specifically, through equal-loudness adjustments of pure tones at 

frequencies centered on critical bands. The fact that performance in the adjusted bone 

condition was still not as good as performance in the air condition did show some 

evidence that there is imperfect filter effectiveness, but not by the predicted factors. The 

lack of differences in variability across conditions in fact suggested that dynamic 

properties of the pathway were not an issue. One possible cause for the apparent 

limitation of the bone-conduction pathway is that perceptual judgments are required to 

form the BAF, rather than the perhaps more accurate acoustic measurements that occur 

with air-conducted HRTFs. The lack of differences in lateralization between conditions 

and the bias towards perceiving stimuli to be more lateralized in the bone condition 

provided strong evidence against a leaky dichotic theory of bone conduction (component 

A), suggesting that there may be no limitations in the maximum lateralized stimulus 

delivered through bone conduction.  

Finally, these findings provide insights into applied use of bone-conduction 

transducers. These findings show that BCTs could be used with V3DAD technology to 

provide a way to deliver controlled spatial audio while leaving the ears unoccluded for 

optimal access to ambient sounds, or allowing the ears to be plugged to block out 

dangerously loud ambient sounds. The present study showed this with plugged ears, but 

the findings should generalize to open ears as well (although the specific BAF would 
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certainly be different). This study also provided an estimate of the performance cost 

associated with using BCTs, which users will have to carefully weigh against the 

advantages of having the ears unoccluded or plugged. In addition, these studies also 

provided an average (“generalized”) BAF that can be used by the public to improve 

V3DADs on BCTs. However, the variability of the BAFs for each individual shown in 

this study suggested that BAFs may have to be measured for each person (that is, be 

“individualized”). If individualized BAFs are justified, the present studies demonstrated a 

fast and effective way of measuring a BAF. 

 It was clear from these data that air-conduction performance was predictive of 

bone-conduction performance: those who were better at air were better at bone, and those 

were worse at air were worse at bone. Given the additional effort associated with 

measuring the BAF, air-conduction localization performance could be used as a screening 

criterion for bone-conduction performance. Pearson’s r correlations between the 

conditions in performance metrics were calculated to quantify the predictive power of air-

conduction performance for estimating bone-conduction performance (see Appendix C).   

 The correlations between air and adjusted bone performance were greater than .8 

for many metrics: azimuth error, elevation error, raw elevation slope, and raw elevation 

R2. The correlations between air and unadjusted bone were generally less strong, but all 

greater than .3. Thus, air-conduction performance is highly predictive of bone-conduction 

performance with a BAF, but less predictive of bone conduction performance without a 

BAF. The strong correlations for the metrics that showed considerable differences 

between conditions are particularly valuable (e.g., raw elevation slope and R2). They 

indicate that despite a difference in performance between conditions, the air condition 
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performance is highly predictive of bone-conduction performance with a BAF. Overall, 

these correlation data suggest that air-conduction localization performance could be a 

useful screening criterion for bone-conduction performance when a BAF is used. 

4.7. Future Directions 

Future investigations should also seek to verify these results with a complete spatial 

audio system that has been used to create the high performance levels consistent with the 

literature using individualized HRTFs, which require data collection in a lab specializing 

in virtual 3D audio systems.  

Future research investigating BAFs should consider the benefit of individualized 

BAFs relative to generalized BAFs. This will indicate the benefit gained by taking the 

resources to measure BAFs for individuals. If there is little or no cost associated with 

using generalized BAFs, then they would be preferable. Other methods of measuring 

BAFs should also be explored to seek a method that can create more accurate BAFs, if 

that is possible. For example, an alternative BAF formation method could rely on 

computational models of the bone-conduction pathway (e.g., Przekwas, et al., 2007; 

Walker, et al., 2007).  Perhaps in combination with alternative BAF measurement 

techniques, it would also be informative to measure the added benefit of phase 

manipulations in the BAF.  

The present studies involved measurement and test of BAFs with plugged ears. It 

would be interesting to understand the effect of unplugging the ears on the BAF and 

localization performance. In addition, bone-conduction transducers could be useful in 

many other contexts outside of and in conjunction with spatial audio – for example, radio 

communications and music listening. It would be interesting to look into the effect of 
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BAFs in these contexts, with the corresponding stimuli that differ from the noise stimuli 

used in the present studies. 
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APPENDIX A 
BONE-CONDUCTION ADJUSTMENT FUNCTIONS 

 
 

 
Figure 64. Bone-conduction adjustment function (BAF) for P1. 
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Figure 65. Bone-conduction adjustment function (BAF) for P2. 
 

 
 

 
Figure 66. Bone-conduction adjustment function (BAF) for P3. 
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Figure 67. Bone-conduction adjustment function (BAF) for P4. 
 

 
 

 
Figure 68.  Bone-conduction adjustment function (BAF) for P5. 
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Figure 69. Bone-conduction adjustment function (BAF) for P6. 
 

 
 

 
Figure 70. Bone-conduction adjustment function (BAF) for P7. 
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Figure 71. Initial (“pre”) bone-conduction adjustment function (BAF) and re-measured  
(“post”) BAF for P8. 
 
 
 

 
Figure 72. Bone-conduction adjustment function (BAF) for P9. 
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Figure 73. Bone-conduction adjustment function (BAF) for P10. 
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APPENDIX B 
 

DIGITAL SIGNAL PROCESSING DETAILS 
 
 
 The stimuli used in Study 2 were created using a system of cascading filters applied 

via frequency-domain multiplication, conducted in the MATLAB environment. All 

transformations between the frequency domain and time domain occurred using 

MATLAB’s “fft” and “ifft” algorithms. All values at the negative frequencies were 

computed by taking the complex conjugate of each value (except at the DC frequency (0 

Hz) and at the Nyquist frequency (22050 Hz)), and reversing the order of values. 

 The initial input signal was 500 milliseconds of Gaussian-distributed noise, at a 

sampling rate of 44.1 kHz with 16 bits per sample. This noise was then filtered by the 

DTFs. Within the DTF filtering algorithm, a time-domain version of the DTF for each ear 

was loaded from the file provided by Middlebrooks (1999b). All subsequent steps 

described for the DTF filtering occurred for each ear’s DTF, using the same input signal. 

The time-domain DTF was transformed into the frequency domain, truncated to only 

include the real frequencies, and padded with zeros. Then the second half of the spectrum 

(negative frequencies) was computed, and subsequently transferred back into the time 

domain. These steps accomplished time-domain interpolation. Then this interpolated 

time-domain signal was decimated (every nth sample selected) based on the scale factor 

(where decimation step = scale factor/interpolation factor, and the interpolation factor 

equals 32). The time-domain interpolation combined with the time-domain decimation 

produced the frequency scaling, as described in Middlebrooks (2000). The time-domain 

frequency-scaled DTF was then padded with zeros and transformed back into the 

frequency domain (this time with the full spectrum). The input signal was then padded 
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with zeros and transformed into the frequency domain. The number of zeros added on to 

each vector was such that the length equaled the total length of the DTF plus the length of 

the input signal, minus one, to prevent circular convolution. The frequency-domain 

representation of the frequency-scaled DTF and input signal were then multiplied to 

accomplish the filtering. The product of this multiplication was then transformed back 

into the time domain. This output was then normalized so that it had a maximum value of 

one. What happened to the signal next depended on the condition that a stimulus was 

being generated for. 

 For the adjusted bone condition, each channel of the DTF filtering output was 

filtered by a BAF defined separately for each ear. The BAF was defined at 33 points by 

the equal-loudness study, from 273 Hz to 15621 Hz. The amplitude at 0 Hz was set to 

zero, the amplitude at 20 Hz was set to the amplitude defined at 273 Hz, and the 

amplitude at 22050 Hz was set to the same value defined at 15621 Hz. Then 2048 

linearly spaced points lying between 0 and 22.05 kHz were interpolated using 

MATLAB’s cubic interpolation algorithm (piecewise cubic Hermite interpolation). Next 

the frequencies between 0 Hz and 223 Hz were ramped up from zero to the amplitude 

value at 223 Hz. The amplitude values between 17959 and 22,050 Hz were ramped down 

from the amplitude value at 17959 Hz to an amplitude of zero. The frequency ramp-down 

points were chosen because they were one-sixth octave away from the band limits of the 

final stimuli (250 and 16500 Hz). The amplitude values at the negative frequencies were 

then computed and concatenated with the values at the real frequencies to form the full 

symmetrical frequency-domain representation of the BAF. The phase values were left 

undefined for the BAF, which left the phase of the input unaffected by the filter (thus 
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making the BAF a linear phase filter). The BAF was then transformed into the time 

domain. Next, this time-domain signal was rotated to put the peak in the middle of the 

record and treated to a Hamming window. Both the input signal (the output from the DTF 

filtering) and time-domain BAF were then padded with zeros and put back into the 

frequency domain. The number of zeros added on to each vector was such that the total 

length of each signal equaled the two times the length of the longest vector (the input 

signal). The frequency-domain representations of the BAF and input signal were then 

multiplied, and the product was put into the time domain. The time-domain filtered signal 

was then truncated, removing the first and last n points from the signal, where n = the 

half the filter length plus two. This truncated signal was then sent on to the bandpass 

filter. 

 For the unadjusted bone condition, each channel of the DTF filtering output was 

filtered by the inverse of the BCT frequency response. The frequency response was 

measured in the Sonification Lab by Bruel & Kjaer PULSE system analyzer and Bruel & 

Kjaer Type 4930 Artificial Mastoid, using the swept-sine wave method. The frequency 

response was measured separately for each transducer (left and right), and applied to the 

appropriate channel in the filtering process. The BCT frequency response measurement 

specified 800 points (in polar coordinates) between 0 and 20 kHz. To accomplish the 

filtering, first the file with the frequency response data was loaded, and then the values at 

frequencies lying between 20 and 22050 Hz (undefined by the measurement) were set to 

zero. The second half of the frequency domain representation of the frequency response 

was then computed and concatenated with the first half. Next, the frequency-domain 

representation of the BCT frequency response was transformed back into the time 



 143 

domain, where a minimum-phase version of the impulse response was calculated using 

MATLAB’s “rceps” algorithm. The minimum phase impulse response was then truncated 

to 880 points (determined by trial and error), and multiplied by the last half of a Hanning 

window. Next, the windowed impulse response was padded with zeros (so that the total 

length was twice as long as the input signal), and transformed into the frequency domain. 

The inverse of the minimum-phase frequency response was then computed by taking the 

reciprocal of each frequency-domain element. This created very high boosts at either end 

of the spectrum, since the parent frequency response ramped down to zero at the ends. To 

remove these boosts, the amplitude was ramped up from zero until 223 Hz, and ramped 

down to zero starting at 17959 Hz. The phase of the original inverse frequency response 

was preserved and added back in after the ramping. The imaginary values at the DC 

frequency (0 Hz) and Nyquist frequency (22050 Hz) were then removed, since all real 

signals should have a real value at the DC and Nyquist frequencies. Then the second half 

of the inverse frequency response was calculated and concatenated with the first half, and 

padded with zeros. Next, the input signal (the output from DTF filtering) was 

transformed into the frequency domain after being padded with zeros. The number of 

zeros added on to each vector was such that the total length of each signal equaled the 

two times the length of the longest vector. The product of the inverse frequency response 

and frequency-domain input signal was then computed and transformed back into the 

time domain to produce the filtered signal. Finally, the filtered signal was truncated to the 

length of original input signal. After this was done, the amplitude of the time-domain 

filtered signal was multiplied by the adjustment value determined in the unadjusted 

equal-loudness trials. 
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 The output from the DTF filtering (for the air condition), BAF filtering (for the 

adjusted bone condition), or inverse BCT frequency response (for the unadjusted bone 

condition) was then bandpass filtered. Before the signal was bandpass filtered, it was 

padded with n zeros, where n equals two times the signal’s length. Then the signal was 

sent through a 4-pole butterworth bandpass filter with cutoffs at 250 and 16500 Hz. The 

filter was built using MATLAB’s “butter” command, and applied using MATLAB’s 

“filtfilt” command, which performs zero-phase filtering by running the input through the 

filter in the forward direction and then again in the reverse direction. Note that this 

doubles the effective filter order, making for an 8-pole filtering effect. After the bandpass 

filtering occurred, the gain from the filtering was removed from the signal by normalizing 

the amplitude back to the pre-bandpass amplitude. 

 After the bandpass filtering was complete, the final time-domain preparations were 

done. First, the signal was truncated to 250 milliseconds by removing an equal number of 

samples off the front and back; about 250 milliseconds’ worth of total samples were 

typically removed. All the truncation was done so that the amplitude envelope of the 

signal was similar to the original input signal at all stages of the cascading filters. Finally, 

a raised-cosine window was applied to the first and last 10 milliseconds of the signal. 

Now that the stimuli burst was in final form, it was concatenated with 300 milliseconds 

of silence three times to produce the pulse train. This pulse train was then written to a 

wave file, which was read during the stimuli presentation.  
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APPENDIX C 
 

PERFORMANCE CORRELATIONS BETWEEN CONDITIONS 
 
 
Table 20 

Correlation table showing Pearson’s r for azimuth error between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.9803 0.9529 

Adjusted 
Bone  1 0.9206 

Unadjusted 
Bone   1 

 

 
Table 21 

Correlation table showing Pearson’s r for front/back reversal rates between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.352 0.4404 

Adjusted 
Bone  1 0.6954 

Unadjusted 
Bone   1 
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Table 22 

Correlation table showing Pearsons’ r for up/down reversal rates between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.6348 0.3127 

Adjusted 
Bone  1 0.8695 

Unadjusted 
Bone   1 

 
 
 
Table 23 

Correlation table showing Pearsons’ r for elevation error between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.9008 0.8028 

Adjusted 
Bone  1 0.6535 

Unadjusted 
Bone   1 

 
 
 
Table 24 

Correlation table showing Pearson’s r for raw elevation slope between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.8708 0.5783 

Adjusted 
Bone  1 0.8090 

Unadjusted 
Bone   1 
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Table 25 

Correlation table showing Pearson’s r for raw elevation R2 between conditions. 

 Air 
Adjusted 

Bone 
Unadjusted 

Bone 

Air 1 0.8256 0.5344 

Adjusted 
Bone  1 0.8350 

Unadjusted 
Bone   1 
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APPENDIX D 
 

COMMON DTF COMPONENT AND ER-1 DIFFUSE FIELD RESPONSE 
COMPARISON 

 
 
 The common component removed from the HRTF to create the DTF is added 

back in to the signal by the diffuse-field frequency response of the headphones. Thus, the 

individualized common component is a replaced by a generalized estimate of the 

common component. The degree to which this two functions do not match can explain 

the lack of high performance found with individualized HRTFs with Participant 6. Figure 

Figure 74 shows the diffuse-field frequency response, and Figure 75 shows the common 

component of the individualized HRTFs measured for Participant 6.  Comparing the two 

graphs shows that the functions have a similar shape up to the 2.5 kHz peak and the 

subsequent dip.  The small peak at 7 kHz in the diffuse-field frequency response is much 

larger in the common HRTF component, and the peak is wider such that it encompasses 5 

kHz. There is also an additional peak at 12,450 Hz in the common component that is not 

present in the diffuse-field frequency response. These considerable differences were 

likely to contribute to the low performance with the individualized HRTFs. 
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Figure 74. “Diffuse-field” frequency response of Etymotic ER-1 headphones. 
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Figure 75. Common component of individualized HRTF measured on P6. 
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