
Non-speech Input and Speech Recognition 
for Real-time Control of Computer Games 
Adam J. Sporka1, Sri H. Kurniawan2, Murni Mahmud2, Pavel Slavík1

Czech Technical University in Prague 
Department of Computer Science and Engineering 

Karlovo nám. 13, 12135 Praha 2 
Czech Republic 

Tel.: +420-22435-7440 

sporkaa@fel.cvut.cz 
slavik@fel.cvut.cz

University of Manchester 
School of Informatics 

PO Box 88, Manchester M60 1QD 
United Kingdom  

Tel.: +44-161-306-8929 
s.kurniawan@manchester.ac.uk 

M.Mahmud-2@postgrad.manchester.ac.uk 
 

ABSTRACT 

This paper reports a comparison of user performance (time and 
accuracy) when controlling a popular arcade game of Tetris using 
speech recognition or non-speech (humming) input techniques. 
The preliminary qualitative study with seven participants shows 
that users were able to control the game using both methods but 
required more training and feedback for the humming control. The 
revised interface, which implemented these requirements, was 
positively responded by users. The quantitative test with 12 other 
participants shows that humming excelled in both time and 
accuracy, especially over longer distances and advanced difficulty 
levels. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Interfaces – 
Input devices and strategies (e.g., mouse, touchscreen), 
Interaction styles (e.g., commands, menus, forms, direct 
manipulation), Voice I/O. H.1.2 [Models and Principles]: 
User/Machine Systems – Human factors. I.3.6 [Computer 
Graphics]: Methodology and Techniques – Interaction techniques. 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Acoustic input, game control, voice interaction, non-speech 
control, speech recognition, motor-impaired users. 

1. INTRODUCTION 
The need for making computers more accessible to people with 
special needs, including people with motor impairment, has been a 
hot topic of the past decade, with some high profile accessibility 
initiatives such as WCAG, Section 508 of the Rehabilitation Act 
in USA, and the EU’s eAccessibility initiative, to name a few.  

The increasing participation of the community of computer users 
with special needs consequently brings about an increased demand 
of involving this community in the area of computer-supported 
entertainment, including the computer games. This brings about 
the need for understanding the benefits and drawbacks of different 
assistive input devices and techniques that may be used for 
playing computer games. 
The user interfaces of most of the turn-based1 or strategic games 
(e.g. chess, checkers, or SimCity) do not depart far from the 
paradigm of common desktop applications. While these games 
may involve a large number of operations, they usually do not 
expect users’ actions in timely manner, and therefore are not 
likely to disadvantage users with motor impairments. 
However, in arcade games2 (e.g. Pitfall! [1] or Tetris [12]), people 
with motor impairments are usually at a disadvantage when 
playing against people without motor impairments due to their 
disabilities: Even though only a limited number of game 
commands is required, these commands have to be issued rapidly 
– and many assistive devices are unable to cope with this problem. 
Motor impairments are a loss or limitation of function in muscle 
control and/or movement, or a limitation in mobility. There are 
various aids that can help the people with motor impairments use 
interactive systems more effectively, including tools such as 
Sticky Keys that make difficult key combinations more accessible, 
voice recognition systems, pointers controlled by eye, mouth or 
head movements,  and text entry systems to help enter messages 
with fewer keystrokes [20]. Whilst most of these devices have 
been proven to successfully help these users, some of them incur 
high cost, which made acoustic input, such as speech recognition 
systems, a popular choice [4]. 
Speech recognition is suitable for many applications, in which the 
interaction with a computer system is based on a dialogue 
between users and computers (a command—response style of 
interaction), ranging from dictation of text to various telephony 
service applications [3]. Some people with motor impairment use 
adapted speech recognition technology to replace a mouse, e.g. by 
                                                                 
1 Turn based games are games where players are allowed a period 

of analysis before committing to a game action, ensuring a 
separation between the game flow and the thinking process [19]. 

2 Arcade games are games with fast action where hand-eye 
coordination is the primary skill needed to beat the game [7]. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ASSETS'06, October 22–25, 2006, Portland, Oregon, USA. 
Copyright 2006 ACM 1-59593-290-9/06/0010...$5.00. 

213



issuing directional commands such as ‘LEFT’, ‘UP’ [8], or 
iteratively selecting square areas on screen [4]. 
Recently, non-speech input (the use of other sounds than speech 
that are produced by the human vocal tract, such as humming, 
hissing, or whistling, for controlling user interfaces) is gaining 
popularity within the HCI community. These sounds can be 
characterized by a variety of features (such as pitch, volume, or 
timbre) that may be directly used as an input to user interfaces. 
Non-speech input has been reported and evaluated in many 
different contexts. The entry of values in a voice-operated remote 
control of a TV set is proposed in [7]. A program described in [21] 
was used to launch predefined UNIX commands upon reception of 
corresponding melodies. Also, the non-speech input has already 
been successfully employed to emulate standard mouse [2, 17, 19] 
and keyboard [16]. 
Speech recognition and non-speech acoustic inputs differ in the 
following two aspects: 

1) The response delay. While most speech recognizers wait for 
users to finish their utterance before initiating the recognition, the 
elements of non-speech audio input can be processed and 
interpreted on-the-fly as soon as users produce them and thus 
shorten the response delay of the processing. 
This is demonstrated on Figure 1. In speech recognition systems, 
utterances for the start and end of a desired action (U1, U2) must 
be completed in order to begin and end a desired action. In non-
speech control, a desired response may be mapped directly to a 
single input sound and being executed while the tone is held. 

2) The domain size. With a good design of grammatical mapping 
of the utterances, speech recognition may be used to trigger a 
wide range of operations, wider than is possible with direct 
application of non-speech input. There is only a limited amount of 
features of the non-speech sounds that may be extracted and 
assigned to different input channels. 
Because of these differences, speech and non-speech inputs are 
suitable for different genres of computer games. We can argue 
that turn-based or strategic games are perhaps best controlled 
using speech recognition (as they are not time-sensitive and may 
require a large number of operations) while non-speech control 

may be more suitable for arcade games, which rely heavily on 
real-time control. The use of non-speech control in arcade games 
has already been described in past studies, for example in [6], and 
demonstrated in [15]. 

2. THE STUDY OUTLINE 
This paper presents a comparative study of speech recognition and 
non-speech input, employed to control arcade games. We decided 
to perform this comparison on Tetris [10, 12] for its simplicity and 
popularity, and for being a game that is largely affected by the 
performance of the input method. Tetris is indeed a good 
representative of the arcade genre and it is still one of the most 
popular games [5]. 
There is one caveat of this study. We did not include people with 
motor impairment in this study as the aim of this study was to 
provide early feedback on the evaluation methodology and user 
interface that we developed. 
This study aims to answer one fundamental question: which of the 
two input methods, speech recognition or non-speech input, would 
yield a better performance? We also decided to include the 
keyboard control into our study as a baseline reference. 
There are many variants of Tetris; however, the basic rules are 
common for all. The player is required to solve a sequence of 
episodes. In each episode [10], a presented tetromino—randomly 
selected from seven possible tetrominoes, see Figure 2a—must be 
maneuvered during its descent (shifting the tetromino to the sides 
or rotating it) from its spawning position to a desired position on 
the top of previously placed tetrominoes in the playing field which 
is a vertical matrix of square cells (Figure 2b). The dimensions of 
the playing field are usually 10 by 20 to 22 cells. 
Eventually, the tetromino lands in the bottom of the field or on the 
top of the previously landed tetrominoes. When a row is 
completed, it is removed, all rows above it are shifted towards the 
bottom, and the player receives a bonus score. 
The difficulty of the game is determined by the speed of the 
descent, which in most implementations increases over time as the 
game progresses. 
The game ends when there is not enough space for spawning a 
new tetromino. The objective of the game is to stay in the game 
for as long as possible and thereby maximize the score. 
For this study, we used our own implementation of Tetris to 
employ custom input methods for controlling the game as well as 
to create output log files. 

 
Figure 1. Theoretical difference Δt between the 
speech and non-speech control response time. 

 
 

Figure 2: The basic concepts of Tetris. a … possible 
tetrominos, b … a descending tetromino, c … completion of 

a row. 

214



2.1 The Input Methods 
This section describes the input methods we used for our 
experiments.  

2.1.1 Keyboard Control 
Keyboard was the input device in the original Tetris [12]. The 
following set of control keys is in use in many implementations of 
the game and was used in our implementation: the cursor keys of 

 and  are for movements to the left and right respectively, the 
-key is for counter-clockwise turn and the -key is for speeding 

up the landing. In the subsequent text, we shall refer to these 
commands as left, right, turn, and drop. 

2.1.2 Speech Recognition 
We used the industry standard MS SAPI 5.1 library to implement 
the speech recognition input in our system. In all of our tests we 
used the default settings of the speech recognition engine. To 
issue a command, the users have to utter its name, i.e. to say “left” 
for triggering the left command, and so on. 
First, we defined the commands left and right to initiate the 
movements in the relevant direction (which corresponds to 
depressing a cursor key). We introduced a new command stop to 
stop the movement at desired position (= releasing the key). A 
brief test, however, revealed that such interaction was not feasible 
due to significant delay of recognition (about 0.5 sec). 
We have therefore redefined the left and right commands to move 
the piece only by one cell in given direction, as a metaphor of 
hitting the cursor key. The commands turn and drop retained their 
meaning as described in the previous paragraph. 

2.1.3 Non-speech Control 
As mentioned in the Introduction, the non-speech control is based 
on an application-dependent interpretation of non-speech sounds 
produced by the user. 
A typical organization of the signal processing pipeline for a non-
speech input is shown on figure 3. The sound signal acquired by 
microphone (and a sound card) is processed by a sound analyzer. 
Extracted features (such as the presence of a tone and the pitch of 
the tone) are being tracked by gesture recognizer which identifies 
the non-speech gestures in the incoming signal. 
Non-speech gestures are understood as short melodic patterns of 
defined pitch profile and/or length. Depending on the context in 
which the non-speech input is used, the set of gestures for 
individual commands or operations is defined to cover all possible 
operations. The description of gestures may be also based on 
different features, such as timbre or volume, as used for example 
in [2]. 
The results of our previous studies [16, 19] indicated a viability of 
non-speech input for controlling a mouse cursor as well as 
emulating a keyboard. Our studies also revealed that humming 
(“mmm”) was the non-speech sound that most participants 
reported to be easy and comfortable to produce even over an 
extended period of time. We have therefore decided to use 
humming for the non-speech control in this study. 
The gestures used in our implementation are shown in Figure 4. A 
tone with falling pitch has been assigned the command left. A tone 
with raising pitch is the gesture for the command right. To 
eliminate the influence of unintended minor fluctuations, the pitch 
of tone must fall or rise by at least a minimum increment of about 
two semitones from the initial pitch to be valid falling or raising 
tone. As long as the tone is held, the current tetromino is moved to 

the left or right. The tetromino stops once the tone disappears (the 
inherent stop command). 
The remaining two commands, turn and drop were mapped to flat 
tones of different length. The turn command is issued upon 
recognition of a flat tone shorter than about 0.3 s. Any longer flat 
tone triggers the drop command upon its termination. 
The non-speech sound interpreter can be modeled using a state 
automaton which is schematically shown in Figure 5. An actual 
sequence of gestures, as recorded during a game, is shown in 
Figure 6. 
For measurement of the pitch of humming, we have used 
autocorrelation, as described for example in [14].  

3. A PILOT STUDY 
For the pilot study, we used our implementation of the game in 
which only the essential functionality was included. However, the 
layout of the game screen, as shown in Figure 7, was not different 
from many other Tetris applications. We implemented the game as 
a standalone application for the win32 platform.  
The aim of the qualitative pilot study was to identify potential 
weaknesses of the user interface and to suggest a suitable 
methodology for the subsequent quantitative test. 
Seven users (3 M, 4 F, average age = 15.1, S.D. = 2.21 years old) 
were invited to participate in the study. They all were students of 
a high school in Manchester area. They had no previous 
experience with speech recognition or any application that uses 

 
 

Figure 3: Non-speech sounds processing pipeline 
 

 
 

Figure 4: Pitch profiles of the set of gestures used in our 
implementation of Tetris. 

 
 

Figure 5: Gesture recognizer. Solid lines – transitions when 
tone exists; dotted lines – transitions upon silence; captions in 
quotes – control commands, lowercase captions – transition 

conditions. 

215



non-speech input. However, they were familiar with at least one 
commercial implementation of the game and they previously had 
spent at least several hours playing it. 
During the individual sessions, each participant was asked to learn 
to play the Tetris using speech commands and humming. At their 
disposal, they had a recording of the control sounds produced by 
an expert user (the developer of our implementation). They were 
given 15 to 30 minutes to get acquainted with the acoustic input 
methods. After that, they were asked to play the game using 
keyboard, non-speech input, and speech recognition for five 
minutes. Their play was observed by an experimenter. 
Overall, the participants reported that playing the game through 
keyboard was the easiest because of their previous experience 
with the game. They were not able to memorize the acoustic 
gestures for humming. They reported to be much more confident 
when using the speech recognition, however they were convinced 
that they would eventually be able to learn the correct non-speech 
gestures if given more time to do so. 
This qualitative study had resulted in two very useful suggestions 
for the next round of design and evaluation: 

• The participants should be given more time for training of the 
humming control before measuring their performance. An 
integrated training application should be implemented in the 
next version of the user interface, and the participants should 
be asked to perform training before the actual performance 
measurement in the quantitative test. 

• The participants required some form of visual feedback of 
their humming. A visual feedback of the pitch of the 

produced humming as well as the visualization of the 
recognized non-speech gestures would be included in the 
revised application. 

Based on the findings in the qualitative study, the implementation 
of the game was modified. Especially, we added the non-speech 
control feedback gauges that allow users to see the pitch profile of 
their voice and corresponding gestures as identified by the gesture 
recognizer (see Figure 8).  

4. QUANTITATIVE TESTS 
To provide quantifiable evidence on the difference (or lack of) 
between the effectiveness of the humming and speech control, two 
tests were performed: lateral speed test and episode test. They are 
described in detail in Section 4.1 and 4.2. At the end of these two 
tests, the participants were asked to play Tetris using both input 
methods and to provide comments and feedback. 
Twelve people who had some experience playing Tetris 
participated in the test. Unfortunately, the test was not gender-
balanced: 11 of them were men. Their average age is 26.9 years 
old (S.D. = 4.66 years).  
All participants were given a copy of our program and asked to 
learn to play Tetris using speech recognition and non-speech input 
at home before performing the tests in our lab. In average they 
spent 35 minutes on training. 

4.1 Lateral Speed Test 
For the purposes of this study, we defined the following terms: 

• The preset lateral speed is the distance measured in the 
number of cells the tetromino travels per second horizontally 

 
 

Figure 7: A screenshot of the first version of our 
implementation. 

 
 

Figure 6: A sequence of gestures recorded during an actual game, shown in a correct time scale. 
The height of the vertical arrow by the left side of the chart corresponds to interval of three semitones. 

The vertical dashed lines separate the episodes of the game. 

 
 

Fig 8: The revised user interface. 
 

216



as long as the left or right non-speech gesture is held. The 
preset speed is not defined for the speech recognition as in 
our scenario, the speech commands left and right make the 
tetromino move only one cell sideways at a time (see section 
2.1.2). 

• The effective lateral speed is the number of cells the 
tetromino travels horizontally (the distance between the 
origin and the destination cells) divided by the actual time 
the player needs to complete the desired motion. 

The purpose of this study was to examine the effective speed in 
two different input methods, the speech recognition and non-
speech input. An average effective speed was measured for both 
methods. Consequently, the relationship between the preset and 
corresponding effective speeds was investigated for the non-
speech input method to determine the preset speed at which the 
users would gain the highest effective speed. 
In this test, we simulated the horizontal steering operation in 
Tetris without requiring the participants to think of any strategy 
commonly performed in the game – kind of a Fitts’ Law test 
without target’s size variations. 

Figure 9 shows the stimulus used for this test. The users were 
asked to simply move the small black square from its origin to the 
target position coloured green (the larger shaded square). Pressing 
the Next button records the current trial and advances to the next 
trial. Pressing the Again button resets the trial and returns the box 
to its origin. This could be used in case of unexpected disturbance 
in that particular trial. The data gathered were saved to a file for 
further processing. 

4.1.1 Speech Recognition Test 
In this test, users were supposed to use the speech commands ‘left’ 
or ‘right’ to move the black square at their own pace. The test 
consisted of 16 trials (distances 1, 2, 4, and 6 cells; 2 directions; 2 
repetitions). The effective lateral speed was calculated for each 
trial as the distance divided by the time between the start of the 
first utterance of a command and the recognition of the last 
command in trial. 
Figure 10 depicts the distribution of the effective speeds of all 
participants. The average effective speed across all participants is 
1.4 blocks per second (S.D. = 0.49), and its distribution is close to 
normal. 
T-test shows that across all subjects, the values of the average 
effective speed for the motion to the left and right were not 
significantly different (p>0.05). We may imply that the subjects 
were equally capable of controlling the movements to the right 
and to the right using speech. 
One-way ANOVA shows that the average effective speed 
decreases significantly with the increase of distance traveled 
(F3,159 = 32.1, p = .000). The LSD post-hoc analysis reveals that 
the difference is only insignificant between the 4-cell and 6-cell 
distances. This can be interpreted as the fact that in our scenario, 
the speech is more effective for controlling cursor movement at 
short distances (i.e. 1- or 2-cell movement) than at longer 
distances. 

4.1.2 Non-speech Input Test 
In the non-speech input test, the effective speed was measured for 
five different preset speeds, as summarized on the left side of 

 
 

Figure 10: Speech-controlled effective speed distribution 

 
Figure 9: Lateral speed test screenshot 

 
 

Figure 11: Humming-controlled effective speed distribution 

217



Table 1. Lower preset speed was expected to yield less overshoots 
but lower effective speed and vice versa. In total, each participant 
performed 80 trials (16 trials as described in previous section × 5 
preset speeds). 
Figure 11 depicts the distribution of the effective speeds of all 
participants for all preset speeds. As the figure shows, the average 
effective speed across all participants was 3.5 cells per second 
(S.D. = 2.20), around 2.5 times faster than the speech-controlled 
effective speed. The distribution is skewed to the left indicating 
that there is a tail of expert performance in this task. 
The T-test showed that, similar to the case of speech test, across all 
subjects, the values of the average effective speed for the motion to 
the left and right were not significantly different (p>0.05).  
The one-way ANOVA showed that the averages of the effective 
speeds for different preset speeds varied significantly (F4,795 = 
4.852, p = .001). Table 1 and Figure 12 show the averages of the 
effective speed at different magnitudes of the preset speed. As can 
be seen, there was not a linear relationship between the preset 
speed and effective speed. S4 and S6 preset speeds yielded 
significantly better effective speeds than other preset speeds (as 
also verified using LSD post-hoc analysis). 

One-way ANOVA also showed that the averages of the effective 
speeds for different distances were significantly different. LSD 
post-hoc analysis showed that the effective speeds were higher at 
bigger distances and that the effective speeds for 1 and 2 cells 
movements were not significantly different. We find this very 
interesting, as this implies that controlling movements through 
humming results in faster movements over longer distances. 

The preset speed of 7.35 cells per second (S6) yielded the 
maximum mean effective speed across all players. 

4.2 Episode Test 
Episode test aimed purely at testing the accuracy of speech and 
humming input. To perform this test a screen similar to the Tetris 
screen was used, as depicted in Figure 13.  
To rule out the variance of individual gaming strategies, the test 
consisted of sequence of predefined episodes repeated in 3 
difficulty levels differing in tetromino descent rates (1.25, 2.0, and 
4.5 cells/sec., referred as slow, medium, and fast respectively 
from here on). 
For each episode, the initial configuration of the board as well as 
the initial and target positions of the piece were defined. The 
participant’s task was to manipulate the presented tetromino so 
that it lands in the given target position, as shown in Figure 14. 
The same sequence of episodes was to be performed by humming, 
speech recognition, and—as an accuracy baseline—also using 
keyboard which the participants would have been very familiar 

Table 1: Effective speeds at various preset speeds 

Preset Speed Effective Speed 

Code Magnitude [cells/s] N Mean [cells/s] S.D. 

S3 14.2 159 3.0 2.70 

S4 10.8 159 3.8 2.72 

S6 7.35 159 3.9 2.07 

S8 5.4 160 3.5 1.62 

S10 4.35 159 3.1 1.43 

Total 796 3.5 2.20 
 

 
Figure 13: A screenshot of the episode test mode. 

 
 

Figure 12: Visualization of the data contained 
in Table 1 

 
Figure 14: An example of some of the episodes used in the test. 

 

218



with. The order of this test of these three input methods was 
balanced across the 12 participants. 
Accuracy was calculated as the number of correctly landed 
tetrominoes divided by the total number of episodes. Table 2 
shows the accuracies for all input methods and speeds for all of 
the 12 participants. Figure 15 shows the accuracy averages of the 
12 participants for the three difficulty levels. 
The accuracy declined with the increasing level of difficulty in all 
input methods. The keyboard produced the best results (as 
expected), followed by the humming and speech recognition. 
Using t-tests, we verified that in all three levels the humming 
input produced significantly more accurate movements than 
speech input did, with p<0.05. The interaction between the three 
acoustic methods was not significant. 
The difference in accuracy is a consequence of different 
responsiveness of the three methods. The game is controlled 

fastest using the keyboard, followed by non-speech control, and 
slowest by the speech recognition. In many episodes, the users 
simply did not have enough time to perform all necessary 
maneuvers when using speech recognition. 
If we could interpolate the result to other speeds that we haven’t 
tested, we can argue that the result indicates that humming 
provides a more precise control than speech. 

5. PRELIMINARY USER EVALUATION 
OF THE TETRIS GAME 
After the participants finished the two performance tests, they 
were asked to play Tetris using both input methods and provide 
comments and feedback. The actual games were not measured as 
we would have to tease apart the effects of expertise/strategy and 
the effectiveness of the input methods. In general, the participants 
enjoyed the games with both acoustic methods, but less so when 
using speech recognition at higher difficulty levels. The 
participants were confident that they would be able to achieve 
high scores (albeit perhaps not as high as when playing using 
keyboard) with humming. They also commented that this 
application would be very entertaining and highly appreciated by 
the community of people with motor impairment. 
Some participants suggested that more perceptible feedback 
should be produced by the system to help them distinguish 
between the stop and turn non-speech gestures. Sometimes they 
produced a stop command instead of a turn command as they 
mistakenly felt they already held the tone for long enough. In 
response, we included acoustic feedback to the game. As soon as 
the length of the tone would exceed the threshold between these 
two gestures (see Figure 4), a short soft click would be played by 
the system. This modification was positively commented by the 
participants. 

6. CONCLUSION AND FUTURE WORK 
This study aimed at comparing user performance when using two 
different acoustic input methods: speech recognition and non-
speech input by humming. To provide a context of this 
measurement, a popular arcade game Tetris was used. 
This study started with a qualitative evaluation of the Tetris game 
application we developed. The seven participants were able to use 
both acoustic input methods to play the game, but requested more 
training and some feedback about the humming operation. 
The revised Tetris game interface implemented these two 
suggestions, and the resulting game was positively responded by 
the participants of the user evaluation. 
The quantitative test showed that whilst speech could be used to 
control movement, its performance degraded when the distance 
traveled was high. On the contrary, humming performance was 
better when traveling over long distance. In average, humming-
controlled movements were around 2.5 times faster than speech-
controlled movements. 
Humming was also up to three times more accurate than speech in 
controlling tetrominoes in the episode mode, with the difference 
being more pronounced when the tetrominoes' descent rates were 
higher. An inclusion of acoustic feedback that helped distinguish 
between the gestures of the same pitch profile but different length 
was positively accepted by the players. 
In summary, this study showed that the non-speech input was a 
more effective way for controlling Tetris than the speech Figure 15: Accuracy averages using speech and humming for 

the three difficulty levels. 

Table 2: Accuracy of keyboard, speech, and non-speech 
control at three different descent rates. 

Keyboard Humming Speech 
Subj.  

slow med. fast slow med. fast slow med. fast 

1 1 1 0.92 1 0.5 0.83 0.67 0.5 0.17

2 1 1 0.92 0.92 0.83 0.25 0.67 0.67 0.25

3 1 1 1 1 1 0.67 0.83 0.67 0.17

4 1 1 0.83 0.83 0.75 0.25 0.75 0.42 0.17

5 1 1 0.92 0.92 0.92 0.42 0.92 0.42 0.17

6 1 1 1 1 0.75 0.83 0.58 0.58 0.17

7 1 1 0.83 0.83 1 0.42 0.58 0.42 0.17

8 1 1 0.83 1 0.83 0.42 0.58 0.42 0.17

9 0.92 1 1 0.58 0.67 0.17 0.58 0.42 0.08

10 1 1 1 0.67 0.58 0.33 0.83 0.58 0.17

11 1 1 0.83 1 0.83 0.5 0.75 0.58 0.25

12 1 1 0.67 0.5 0.75 0.33 0.5 0.42 0 

Mean 0.99 1 0.9 0.9 0.8 0.5 0.7 0.5 0.2 

S.D. 0.02 0 0.1 0.18 0.15 0.22 0.13 0.1 0.07

219



recognition. This may indicate that the non-speech input is more 
suitable for control of games requiring rapid yet accurate 
responses of the players. 
There were several limitations of this study, which opens avenues 
for further work. Firstly, we have to think of a way of comparing 
the performances of the actual Tetris game using these two input 
methods, taking into account the individual differences in Tetris 
expertise and the random occurrence of certain tetrominoes.  
Secondly, a longitudinal study would be an interesting 
continuation of this study as it will allow us to observe users' 
learning curves. 
Finally, as some of the users that can benefit the most this system 
are people with motor impairments, we should extend the study 
with a formal usability study with this user group. 

7. ACKNOWLEDGMENTS 
This work has been partly supported by the Ministry of Education, 
Youth and Sports of the Czech Republic under the research 
program LC-06008 (Center for Computer Graphics). 

Tetris is currently a registered trade mark of The Tetris Company 
based in Hawaii, USA. Tetris was originally invented by Alexey 
Pazhitnov. 

8. REFERENCES 
[1] Activision, Inc.  Pitfall! A video game for Atari 2600, 1982. 
[2] Bilmes, J. A., Li, X., Malkin, J., Kilanski, K., Wright, R., 

Kirchhoff, K., Subramanya, A., Harada, S., Landay, J. A., 
Dowden, P., and Chizeck, H. The vocal joystick: A 
voicebased human-computer interface for individuals with 
motor impairments. In Proceedings of Human Language 
Technology Conference (Vancouver, Canada). 2005. 

[3] Cohen, M. H., Giangola, J. P. and Balogh, J. Voice User 
Interface Design. Addison-Wesley, 2004 

[4] Dai, L., Goldman, R., Sears, A., Lozier, J., Speech-Based 
Cursor Control: A Study of Grid-Based Solutions, In 
Proceedings of The Sixth International ACM SIGACCESS 
Conference on Computers and Accessibility, ASSETS 2004, 
Atlanta, USA, ACM, 2004. 

[5] Gawley, R.E. Chirality Made Simple: A 1- and 2-
Dimensional Introduction to Stereochemistry. Journal of 
Chemical Education, 82, 7 (Jul, 2005), 1009-1012 

[6] Hämäläinen, P., Mäki-Patola, T., Pulkki, V. and Airas, M. 
Musical computer games played by singing. In Proceedings 
of The 7th International Conference on Digital Audio Effects 
(Naples, Italy). 2004, 367–371. 

[7] Igarashi, T., and Hughes, J. F., Voice as sound: using non-
verbal voice input for interactive control. In Proceedings of 
the 14th annual ACM symposium on User interface software 
and technology. ACM Press, New York, 2001, 155-156. 

[8] Karimullah, A.S., Sears, A. Speech-Based Cursor Control, In 
Proceedings of The Fifth International ACM SIGCAPH 
Conference on Assistive Technologies, ASSETS 2002, 
Edinburgh, UK, ACM, 2002. 

[9] Makegames.com. Glossary. (Jun, 1 2006);  
http://www.fastgraph.com/makegames/glossary.html. 

[10] Maglio, P. P. , and Kirsh, D. Epistemic Action Increases 
With Skill. In Proceedings of the Eighteenth Annual 
Conference of the Cognitive Science Society. Lawrence 
Erlbaum, Mahwah, NJ, 1996, 391-396. 

[11] Noyes, J. M., Frankish, C. R. Speech recognition technology 
for individuals with disabilities. Augmentative & Alternative 
Communication 8, 4, 1992, 297-303. 

[12] Pazhitnov, A., Gerasimov, V.,  Pavlovsky, D.  Tetris. A video 
game. Academy of Sciences. Moscow, Russia, 1985. 

[13] Persson, M. Development of three AI techniques for 2D 
platform games. Ph.D. Thesis, Department of Computer 
Science, Karlstad University, Sweden, 2005. 

[14] Rabiner, L. R. On the use of autocorrelation analysis for 
pitch detection. IEEE Transactions on Acoustics, Speech, and 
Signal Processing, ASSP-25(1):24–33, February 1977. 

[15] Shahar, E.  The PAH! game. (May, 29 2006); 
http://www.designer.co.il/pah/. 

[16] Sporka, A. J., Kurniawan, S. H., and Slavik, P. Non-speech 
Operated Emulation of Keyboard. In Proceedings of the 
Cambridge Workshop on Universal Access and Assistive 
Technology, CWUAAT 2006. Designing Accessible 
Technology. Springer-Verlag, London, 2006, 145-154. 

[17] Sporka, A. J., Kurniawan, S. H., and Slavik, P. Acoustic 
control of mouse pointer. Universal Access in the 
Information Society, 4, 3 (Mar. 2006), ISSN  237-245. 

[18] Sporka, A., Kurniawan, S.H., Slavik, P., Mahmud, M. Tonal 
Control of Mouse Cursor: A Usability Study with The 
Elderly. In Proceedings of HCI International 2005, Las 
Vegas, 25-27 July, 2005, CD-ROM. 

[19] Sporka, A. J., Kurniawan, S. H., and Slavik, P. Whistling 
User Interface (U3I). 8th ERCIM International Workshop 
"User Interfaces For All", LCNS 3196 (Vienna, June 2004). 
Springer-Verlag, Berlin Heidelberg, 2004, 472-478. 

[20] Usability First. Accessibility: Types of Accessibility Aids. 
(Jun, 1 2006); 
http://www.usabilityfirst.com/accessibility/types.txl. 

[21] Watts, R., Robinson, P. Controlling computers by whistling. 
In Proceedings of Eurographics, Cambridge, UK, 1999. 

[22] Wikipedia. Turn-based strategy — Wikipedia, The Free 
Encyclopedia (Jun, 1 2006); 
http://en.wikipedia.org/wiki/Turn-based_game. 

 

 

220



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


