Models of Users:
Motor, Cognitive, Description

Predicting thoughts and actions
Agenda

- Cognitive models
- Physical models
User Modeling

- Build a model of how a user works, then predict how she will interact with the interface.
- Goals (Salvendy, 1997):
 1. Predict performance of design alternatives
 2. Evaluate suitability of designs to support and enhance human abilities and limitations
 3. Generate design guidelines that enhance performance and overcome human limitations

Note: Not even a mockup is required
Differing Approaches

- Human as Information Processing machine
 - “Procedural” models
 - Many subfamilies and related models
- Human as a biomechanical machine
- Human as a social actor
 - Situated action
 - Activity theory
 - Distributed cognition
Some Cognitive Models

1. Model Human Processor
2. GOMS
3. Production Systems
4. Grammars
1. Model Human Processor

- “Procedural” models:
 - People learn to use products by generating rules for their use and “running” their mental model while interacting with system
- Components
 - Set of memories and processors
 - Set of “principles of operation”
 - Discrete, sequential model
 - Each stage has timing characteristics (add the stage times to get overall performance times)
MHP: Three Systems in Model

- Perceptual, cognitive, motor systems
 - Timing parameters for each stage/system
 - Cycle times (τ):
 - $\tau_p \approx 100$ ms ("middle man" values)
 - $\tau_c \approx 70$ ms
 - $\tau_m \approx 70$ ms
 - Perception & Cognition have memories
 - Memory parameters
 - Code, decay time, capacity
MHP: Model and Parameters

Attention Resources

PERCEPTION (transfer to working memory)
- **Visual Image Store**
 - $\delta_{VIS} = 200 \text{ [90 - 1000] msec}$
 - $k_{VIS} = 17 \text{ [7 - 17] items}$
 - $\kappa_{VIS} = \text{Physical}$
- **Auditory Image Store**
 - $\delta_{AIS} = 1600 \text{ [900 - 3500] msec}$
 - $k_{AIS} = 5 \text{ [4.4 - 5.2] letters}$
 - $\kappa_{AIS} = \text{Physical}$

COGNITION (match, decide, memory transfer)
- **Long-Term Memory**
 - $\delta_{LTM} = \infty$
 - $\mu_{LTM} = \infty$
 - $\kappa_{LTM} = \text{Semantic}$
- **Working Memory**
 - $\delta_{WM} = 7 \text{ [5 - 226] sec}$
 - $\mu_{WM} = 7 \text{ [5 - 34] sec}$
 - $\kappa_{WM} = 3 \text{ [2.5 - 4.1] chunks}$
 - $k_{WM} = \text{Acoustic or Visual}$

Response
- $t_p = 100 \text{ [50 - 200] msec}$
- $t_c = 70 \text{ [25 - 170] sec}$
- $t_m = 70 \text{ [30 - 100] msec}$

Feedback
MHP: Principles of Operation

- Set up rules for how the components respond.
- Can be based on experimental findings about humans.
 - Recognize-act cycle, variable perceptual processor rate, encoding specificity, discrimination, variable cognitive processor rate, Fitts’ law, Power law of practice, uncertainty, rationality, problem space
 - Note: caveat emptor
Applying the MHP

Example: Designing menu displays

- 16 menu items in total
- Breadth (1x16) vs. Depth (4x4)?

Menu:
1. Menu item a
2. Menu item b
3. Menu item c
4. Menu item d
5. Menu item e
6. Menu item f
...

Main Menu:
1. Menu item a
2. Menu item b
3. Menu item c
4. Menu item d

Submenu:
1. Menu item a
2. Menu item b
3. Menu item c
4. Menu item d

Submenu:
1. Menu item a
2. Menu item b
3. Menu item c
4. Menu item d
MHP: Calculations

Breadth (1x16):
- \(\tau_p \) perceive item, transfer to WM
- \(\tau_c \) retrieve meaning of item, transfer to WM
- \(\tau_c \) Match code from displayed to needed item
- \(\tau_c \) Decide on match
- \(\tau_m \) Execute eye mvmt to (a) menu item number (go to step 6) or (b) to next item (go to step 1)
- \(\tau_p \) Perceive menu item number, transfer to WM
- \(\tau_c \) Decide on key
- \(\tau_m \) Execute key response

Time = \[\frac{(16+1)}{2} (\tau_p + 3\tau_c + \tau_m)\] + \(\tau_p+\tau_c+\tau_m \)
Time = 3470 msec

Depth (4x4):
Same as for breadth, but with 4 choices, and done up to four times (twice, on average):

Time = 2 \times \left[\frac{((4+1)/2)}{2} (\tau_p + 3\tau_c + \tau_m)\right] + \tau_p+\tau_c+\tau_m
Time = 2380 msec

Therefore, in this case, 4x4 menu is predicted to be faster than 1x16.
Related Modeling Techniques

- Many techniques fall within this “human as info processor” model
- Common thread - hierarchical decomposition
 - Divide behaviors into smaller chunks
 - Questions:
 - What is unit chunk?
 - When to start/stop?
2. GOMS

- **Goals, Operators, Methods, Selection Rules**
 - Card, Moran, & Newell (1983)

- **Assumptions**
 - Interacting with system is problem solving
 - Decompose into subproblems
 - Determine goals to “attack” problem
 - Know sequence of operations used to achieve the goals
 - Timing values for each operation
Menu structure (breadth vs. depth, again)

Breadth (1x16):

Goal: perform command sequence

Goal: perform unit task of the command

Goal: determine which unit task to do

Operator: Look at screen, determine next command

Goal: Execute unit task

Select: Which method to enter number of command
e.g. IF item # between 1 & 9 THEN use 1-KEY METHOD

Operator: Use 1-Key Method

Operator: Verify Entry... etc.

Result: Average Number of Steps = 33
GOMS: Example, cont’d

- Depth (4x4):
 - Similar steps, in slightly different order and looping conditions
 - Result: Average Number of Steps = 24

- Comparison: Depth is ~25% faster in this case
 - Card et al. did not specify step length (in time)
 - Assume 100msec/step, then depth is 0.9 sec faster
 - Similar to Model Human Processor results
GOMS: Limitations

➢ GOMS is not so well suited for:
 ❖ Tasks where steps are not well understood
 ❖ Inexperienced users

➢ Why?
GOMS: Application

- NYNEX telephone operation system
 - GOMS analysis used to determine critical path, time to complete typical task
 - Determined that new system would actually be slower
 - Abandoned, saving millions of dollars
GOMS: Variants

Keystroke Level Model (KLM)

- Analyze only observable behaviors
 - Keystrokes, mouse movements
- Assume error-free performance
- Operators:
 - K: keystroke, mouse button push
 - P: point with pointing device
 - D: move mouse to draw line
 - H: move hands to keyboard or mouse
 - M: mental preparation for an operation
 - R: system response time
Example of KLM

- **Breadth menu (1x16)**
 - M: Search 16 items
 - 1 or 2 K: Enter 1 or 2-digit number
 - K: Press return key

 \[
 \text{Time} = M + K(\text{first digit}) + 0.44K(\text{second digit}) + K(\text{Enter})
 \]

 (Look up values, and when to apply “M” operator)

 \[
 \text{Time} = 1.35 + 0.20 + 0.44(0.20) + 0.20 = 1.84 \text{ seconds}
 \]

 Note: Many assumptions about typing proficiency, M’s, etc.

 Also ignores most of the time spent determining which task to perform, and how to perform it.

- **Depth menu (4x4)**
 - M: Search 4 items
 - K: Enter 1-digit number (no M, since expert user)
 - K: Press return key

 \[
 \text{Time} = M + K(\text{Digit}) + K(\text{Enter})
 \]

 \[
 \text{Time} = 1.35 + 0.20 + 0.20 = 1.75 \text{ seconds}
 \]

- **Compare the various models in terms of times and predictions:**
 - Vary in times, but not in performance predictions
3. Production Systems

- **IF-THEN decision trees** (Kieras & Polson, 1985)
 - e.g. Cognitive Complexity Theory
 - Uses goal decomposition from GOMS and provides more predictive power
 - Goal-like hierarchy expressed using if-then production rules

- **Very long series of decisions**
 - Note: In practice, very similar to NGOMSL
 - Bovair et al (1990) claim they are identical
 - NGOMSL model easier to develop
 - Production systems easier to program
4. Grammars

- To describe the interaction, a formalized set of productions rules (a language) can be assembled.
- “Grammar” defines what is a valid or correct sequence in the language.
- Used to determine the consistency of a system design
Task Action Grammars (TAG)

- Payne & Green (1986, 1989)
- Concentrates on overall structure of language rather than separate rules
- Designed to predict relative complexity of designs
- Not for quantitative measures of performance or reaction times.
- Consistency & learnability determined by similarity of rules
Summary of Cognitive Models

1. Model Human Processor (MHP)
2. GOMS
 - Basic model
 - Keystroke-level models (KLM)
 - NGOMSL
3. Production systems
 - Cognitive Complexity Theory
4. Grammars
Terminology - example
- Experts prefer command language
- Infrequent novices prefer menus
- What’s “frequent”, “novice”?

Dependent on “grain of analysis” used
- Can break down getting a cup of coffee into 7, 20, or 50 tasks
- That affects number of rules and their types
- (Same issues as Task Analysis)
Modeling Problems (contd.)

- Does not involve user per se
 - Doesn’t inform designer of what user wants
- Time-consuming and lengthy, (but...)
- One user, one computer issue
 (lack of social context)
 - i.e., non-situated
 - Can use Socially-Centered Design
Physical/Movement Models

- Fitts’ Law
- Simulations
Fitts’ Law

- Fitts’ Law
 - Models movement times for selection tasks
 - Paul Fitts: war-time human factors pioneer

- Basic idea: Movement time for a well-rehearsed selection task
 - Increases as the distance to the target increases
 - Decreases as the size of the target increases
Moving

Move from START to STOP

Index of Difficulty:

$$ID = \log_2 \left(\frac{2A}{W} \right)$$
(in unitless bits)
Movement Time

MT = a + b*ID

or

MT = a + b \log_2 (A/W + 1)

Different devices/sizes have different movement times--use this in the design

What do you do in 2D?

Where can this be applied in interface design?
Extending to 2D, 3D

- What is \(W \) in 2D? In 3D?

- Larger movements?
 - Short, straight movements replaced by biomechanical arcs
Simulations

- Higher-level, view humans as components of a human-machine system
- E.g., MicroAnalysis and Design (maad.com)
 - Micro Saint - any type of models!
 - WinCrew - workload models
 - Supply Solver - supply chain
e.g., Micro Saint Sim Tools

http://www.microsaintsharp.com
(Social) Context

- Human information processor models all involve unaided individual
- In reality, people work with other people and other artifacts
- Other models of human cognition
 - Situation action
 - Activity theory
 - Distributed cognition
Situated Action

- Studies situated activity or practice
 - Activity grows out of the particulars of a situation
 - Improvisation is important

- Basic unit of analysis is “the activity of persons acting in a setting”
Example

- Need 3/4 of a cup of cottage cheese
 - Just has a 1-cup measuring cup available
- Person solves problem by
 - Measuring 1 cup
 - Pouring out into a circle
 - Divide into quadrants
 - Take away one quarter
- One time solution to one time problem
Situated Action Principles

- Structuring of an activity grows out of immediacy of the situation
- People engage in opportunistic, flexible ways to solve problems
- NOT Formulaic plans
- NOT Rational problem solving
Activity Theory

- Unit of analysis is an activity
- Components:

 - Noun: subject, object, actions, operations
 - Held by subject, motivates activity “object of game”
 - Goal-directed processes “tasks”
 - How action is carried out
Activity Theory Principles

- Key idea: Notion of *mediation* by artifacts (objects)
- Our work is a computer-mediated activity
 - Starring role goes to activity
 - In “regular” HCI, stars are person and machine

- Context is not “out there”. It is generated by people in activities
Distributed Cognition

- Unit of analysis is cognitive system composed of individuals and the artifacts they use.

- Studies the coordination and cooperation between people and artifacts in a distributed process.
Distributed Cog. Principles

- NOT Individual agents

- Distributed collection of interacting people and artifacts

- Functional system is what matters, not individual thoughts in people’s heads
Simpler User Modeling

- How do attributes of users (in their context) influence the design of user interfaces?

- Are there some design guidelines that we can derive from different attributes?
User Profiles

Attributes:
- attitude, motivation, reading level, typing skill, education, system experience, task experience, computer literacy, frequency of use, training, color-blindness, handedness, gender,...

- Novice, intermediate, expert
Motivation

➢ **User**
 - Low motivation, discretionary use
 - Low motivation, mandatory
 - High motivation, due to fear
 - High motivation, due to interest

➢ **Design goal**
 - Ease of learning
 - Control, power
 - Ease of learning, robustness, control
 - Power, ease of use
Knowledge & Experience

- **Experience**
 - task system
 - low low
 - high high
 - low high
 - high low

- **Design goals**
 - Many syntactic and semantic prompts
 - Efficient commands, concise syntax
 - Semantic help facilities
 - Lots of syntactic prompting
Job & Task Implications

- Frequency of use
 - High - Ease of use
 - Low - Ease of learning & remembering

- Task implications
 - High - Ease of use
 - Low - Ease of learning

- System use
 - Mandatory - Ease of using
 - Discretionary - Ease of learning
Upcoming

➢ Evaluation