

Ebony, and ivoryyyy

$>$ Color vision in nature
$>$ Color mixture
$>$ Effects
> Theories
$>$ Defective color vision

Questions

$>$ Why do we perceive blue dots when a yellow flash bulb goes off?
$>$ What does someone who is "color-blind" see?
$>$ What colors does a honeybee perceive?

Color vision in nature

>Utility

* Evolutionary advantages
$>$ Prevalence
* No clear phylogenetic trends
* Primates -- good
* Birds -- better
* Fish -- better
. Dogs -- worse

0 Camouflage

$>$ Natural

Camouflage

$>$ Man-made

* Often imitate natural (but not always)

NATURAL

EVERGREEN

SNOW

PSYCH 4041 / 6014

Describing Color

> Hue

* Perception of wavelength
- Why is the sky blue, anyway?
- Why is the sky reddish at dusk?

Note Martian sunset is blue

- Rainbow, ROYGBIV \& Newton
> Brightness
* Perception of intensity
* Brightness/intensity relationship depends on hue (wavelength)
* Similar to loudness/intensity depends on frequency
* Bezold-Brucke shift: change in hue with intensity
> Saturation
* Perception of purity (like timbre)
* A pure light is monochromatic
$>$ Primary colors
* Red, green, blue
- Are these 3 colors "special" because of something in our visual system?
- Why 3 primary colors? Why not 4,5 ?
> Secondary colors
* Mixture of primary colors
* Yellow, cyan, magenta (between two rainbows)
* Brighter (two sets of cones stimulated)
* Key for mixes, paints, printing (CYMK, not RGB)
$>$ Tertiary colors
* Mixture of primary and secondary
* Orange raspberry aquamarine purple lime cobalt

Color Phenomena

$>$ At a given light level, blue seems less bright than red or green
> Yellow light seems particularly bright * Stimulates two cone types

$>$ Eye cannot focus all light at the same time

* Focus is particularly difficult for blue
* Implication for Web color choices (among other things)
$>$ Overlap of sensitivities
* Note some red cones respond to blue light, so some blues seem to have some red in them (violet)

Color mixture

> Additive color mixture

* Color circle
* Complementary colors
- Adding even amounts of two colors results in a different color on the edge of the wheel
- Adding different amounts of colors results in an intermediate color inside the wheel
- Reducing intensity of each component leads to gray
* Metamer
- Light produced via a combination that is perceptually the same as a single-wavelength light
March 30, 2020
- Compare yellow to magenta

Color mixture, cont' d

>Pointillism (Seurat, Pissarro, Signac) *Painting technique using little dots

x Color mixture, cont' d

 >Pointillism (Seurat, Pissarro, Signac)

Color mixture, cont' d

> Television/Computer Monitors

* Use three colors of phosphors

Subtractive/reflective color mixture

$>$ Pigments absorb some light and reflect other light
$>$ Reflected light is what is "seen" as the color of the paint

Blue paint

Yellow paint

Blue paint

+ Yellow paint

Effects in color vision

$>$ After images

* Negative after image

Effects in vision, cont' d

$>$ Memory color
*Top-down process (memory, expectation) influences perception of color
>Color constancy

* Perception of an object' s color seems to remain constant across illumination types
- e.g., white paper seems white, regardless of actual color of light reflecting off it

Theories of color perception

$>$ The need for a theory (?)
$>$ Competing (?) theories:
*Trichromatic Receptor Theory

* Opponent Processes Theory

Trichromatic Receptor Theory

$>$ Young (1882) \& then Helmholtz

* Primary colors suggest three distinct receptors
>Cone types
* S, M, L cones (=B, G, R cones)
 *Photopigments
* Retina acts as a spectral analyzer

Blue (short wavelength) $\sim 445 \mathrm{~nm}$	Green (medium) $\sim 535 \mathrm{~nm}$	Red (long) $\sim 570 \mathrm{~nm}$
Cyanolabe	Chlorolabe	Erythrolabe
$5-10 \%$ of cones	30% of cones	60% of cones
sparse	many more	many, many more
periphery of fovea	center of fovea	center of fovea

Trichromatic Theory, cont' d

>Explanatory power

* Adding green \& red results in metamer of yellow
- M\&L cones absorb the two light wavelengths in the same way as one yellow wavelength, and produces the same neural firing
* Sidebar: Cone functioning
* Complementary afterimages
- Staring at a blue image fatigues blue cones
- Leaves only the red and green cones to function effectively
- Then viewing a white source, the red and green cones both work, resulting in perception of yellow

Trichromatic Theory, cont' d

$>$ Questions

* Are there things that Trichromatic Theory cannot explain?
>Adding blue light to yellow light yields white or gray
*The Trichromatic Theory explains this by saying that yellow is really red+green, so adding blue yields white, since all 3 primaries are involved
- But you can have situations where adding red to green leads to grey
$>$ Visualization: You cannot visualize reddishgreen or bluish-yellow

Opponent Process Theory

$>$ Hering; Hurvich \& Jameson
$>$ Two stage process

* 3 cones system at retina
* 3 opponent processes higher up
- white-black
- blue-yellow
- red-green

$>$ Ganglion + LGN cells have opponent processes / center-surround with colors

Blobs in cortex

$>$ Color-opponent neurons with double-opponent receptive fields

Center surround

$>$ A series of these cells can detect color bars, as well as patterns of green-red-green-red, etc.

Stages of Color Perception

Trichromatic

Opponent-process

Figure 9.21 Our experience of color is shaped by physiological mechanisms, both in the receptors and in opponent neurons.

Defective color vision

$>$ Monochromatism

* Only one cone
* True color blindness - only shades of light/dark
$>$ Dichromatism
* Protanopia
- Lack L (red) cone
* Deuteranopia
- Lack M (green) cone
- Both protanopes \& deuteranopes confuse red \& green
* Tritanopia
- Lack S (blue) cone
- Sees only reds \& greens
- Confuse shades of yellows, grays, blues
- Note: this is evidence for opponent processes

Defective color vision, cont' d

$>$ Trichromatism anomaly

* Have all three cone types, but sensitivity of one is deficient
* Protoanomaly
- Deficient L (red) sensitivity
* Deuteranomaly
- Deficient M (green) sensitivity
$>$ Achromatopsia
*Cortical color blindness (rare)
* Congenital (retinal) achromatopsia (1 in 33,000)

Figure 9.14 (a) Ishihara plate for testing for color deficiency. A person with normal color vision sees a " 74 " when the plate is viewed under standardized illumination. (b) Ishihara plate as perceived by a person with a from of red-green color deficiency.
March 30, 2020

Subjective colors

$>$ Benham's top (http://www.michaelbach.de/ot/col-Benham/index.html) * "pattern-induced flicker colors"

III

III

Subjective colors, cont' d

$>$ Kinetic art (e.g., Jesus Soto)

Vantablack: Blackest Black

> https://en.wikipedia.org/wiki/Vantablack

* Vertically Aligned Carbon Nanotube Arrays
* Absorbs 99.965\% of visible light
PAJNT VANTABLACK

Upcoming

$>$ Depth perception
>Constancy \& illusions
>Camouflage

