

Ebony, and ivoryyyy

March 30, 2020

PSYCH 4041 / 6014

Color vision in nature
Color mixture
Effects

- > Effects
- > Theories
- Defective color vision

Questions

- Why do we perceive blue dots when a yellow flash bulb goes off?
- > What does someone who is "color-blind" see?
- > What colors does a honeybee perceive?

Color vision in nature

➢ Utility

Evolutionary advantages

Prevalence

- No clear phylogenetic trends
- Primates -- good
- Birds -- better
- Fish -- better
- Dogs -- worse

> Natural

≻ Man-made

Often imitate natural (but not always)

March 30, 2020

PSYCH 4041 / 6014

Describing Color

> Hue

- Perception of wavelength
 - Why is the sky blue, anyway?
 - Why is the sky reddish at dusk? Note Martian sunset is blue
 - Rainbow, ROYGBIV & Newton
- > Brightness
 - Perception of intensity

- Brightness/intensity relationship depends on hue (wavelength)
- Similar to loudness/intensity depends on frequency
- Bezold-Brucke shift: change in hue with intensity
- Saturation
 - Perception of purity (like timbre)
 - ✤ A pure light is monochromatic

Primary colors

- Red, green, blue
 - Are these 3 colors "special" because of something in our visual system?
 - Why 3 primary colors? Why not 4, 5?
- Secondary colors
 - Mixture of primary colors
 - Yellow, cyan, magenta (between two rainbows)
 - Brighter (two sets of cones stimulated)
 - Key for mixes, paints, printing (CYMK, not RGB)

Tertiary colors

- Mixture of primary and secondary
- Orange raspberry aquamarine purple lime cobalt

Color Phenomena

- At a given light level, blue seems less bright than red or green
- Yellow light seems particularly bright
 - Stimulates two cone types

- > Eye cannot focus all light at the same time
 - Focus is particularly difficult for blue
 - Implication for Web color choices (among other things)

> Overlap of sensitivities

 Note some red cones respond to blue light, so some blues seem to have some red in them (violet)

Color mixture

>Additive color mixture

- Color circle
- Complementary colors
 - Adding even amounts of two colors results in a different color on the edge of the wheel
 - Adding different amounts of colors results in an intermediate color inside the wheel
 - Reducing intensity of each component leads to gray
- Metamer
 - Light produced via a combination that is perceptually the same as a single-wavelength light PSYCH 4041 / 6014

March 30, 2020
PSYCH 4041
Compare yellow to magenta

Color mixture, cont' d

Pointillism (Seurat, Pissarro, Signac) Painting technique using little dots

Color mixture, cont' d

Pointillism (Seurat, Pissarro, Signac)

Color mixture, cont' d

>Television/Computer Monitors

Use three colors of phosphors

Subtractive/reflective color mixture

- Pigments absorb some light and reflect other light
- Reflected light is what is "seen" as the color of the paint

Wavelength (nm)

Blue paint

Yellow paint

Blue paint + Yellow paint

Effects in color vision

>After images

Negative after image

March 30, 2020

PSYCH 4041 / 6014

Effects in vision, cont'd

>Memory color

 Top-down process (memory, expectation) influences perception of color

Color constancy

- Perception of an object's color seems to remain constant across illumination types
 - e.g., white paper seems white, regardless of actual color of light reflecting off it

Theories of color perception

> The need for a theory (?)

Competing (?) theories: Trichromatic Receptor Theory Opponent Processes Theory

Trichromatic Receptor Theory

>Young (1882) & then Helmholtz

 Primary colors suggest three distinct receptors

Cone types

- S, M, L cones (=B, G, R cones)
- Photopigments
- Retina acts as a spectral analyzer

Blue (short wavelength) ~445 nm Cyanolabe	Green (medium) ~535 nm Chlorolabe	Red (long) ~570 nm Erythrolabe
5-10% of cones sparse	30% of cones many more	60% of cones many, many more
periphery of fovea	center of fovea	center of fovea

Explanatory power

Adding green & red results in metamer of yellow

- M&L cones absorb the two light wavelengths in the same way as one yellow wavelength, and produces the same neural firing
- Sidebar: Cone functioning
- Complementary afterimages
 - Staring at a blue image fatigues blue cones
 - Leaves only the red and green cones to function effectively
 - Then viewing a white source, the red and green cones both work, resulting in perception of yellow

Questions

Are there things that Trichromatic Theory cannot explain?

Adding blue light to yellow light yields white or gray

The Trichromatic Theory explains this by saying that yellow is really red+green, so adding blue yields white, since all 3 primaries are involved

 But you can have situations where adding red to green leads to grey

Visualization: You cannot visualize reddishgreen or bluish-yellow

Opponent Process Theory

- Hering; Hurvich & Jameson
- >Two stage process
 - 3 cones system at retina
 - 3 opponent processes higher up
 - white-black
 - blue-yellow
 - red-green

Ganglion + LGN cells have opponent processes / center-surround with colors

Blobs in cortex

Color-opponent neurons 34 with *double-opponent* receptive fields Center surround \geq A series of these cells can detect color bars, as well as patterns of green-red-green-red, etc.

G: Green

Stages of Color Perception

Figure 9.21 Our experience of color is shaped by physiological mechanisms, both in the receptors and in opponent neurons.

March 30, 2020

PSYCH 4041 / 6014

Defective color vision

- Monochromatism
 - Only one cone
 - True color blindness only shades of light/dark

Dichromatism

- Protanopia
 - Lack L (red) cone
- Deuteranopia
 - Lack M (green) cone
 - Both protanopes & deuteranopes confuse red & green
- Tritanopia
 - Lack S (blue) cone
 - Sees only reds & greens
 - Confuse shades of yellows, grays, blues
 - Note: this is evidence for opponent processes

- >Trichromatism anomaly
 - Have all three cone types, but sensitivity of one is deficient
 - Protoanomaly
 - Deficient L (red) sensitivity
 - Deuteranomaly
 - Deficient M (green) sensitivity
- > Achromatopsia
 - Cortical color blindness (rare)
 - Congenital (retinal) achromatopsia (1 in 33,000)

Ishihara Color Tests

Figure 9.14 (a) Ishihara plate for testing for color deficiency. A person with normal color vision sees a "74" when the plate is viewed under standardized illumination. (b) Ishihara plate as perceived by a person with a from of red-green color deficiency.

March 30, 2020

PSYCH 4041 / 6014

Subjective colors

Benham's top (http://www.michaelbach.de/ot/col-Benham/index.html)

"pattern-induced flicker colors"

Subjective colors, cont' d

>Kinetic art (e.g., Jesus Soto)

Vantablack: Blackest Black

https://en.wikipedia.org/wiki/Vantablack

- Vertically Aligned Carbon Nanotube Arrays
- Absorbs 99.965% of visible light

PAINT VANTABLACK

Upcoming

Depth perception Constancy & illusions Camouflage