COLOR VISION

- 1) Color vision in nature
 - a) Utility
 - b) Prevalence

c) Camouflage

2) Color

a) Hue

i) Perception of wavelength

b) Brightness

- i) Note: Change in hue with changes in intensity Bezold-Brucke shift
- c) Saturation

If a tree falls in the forest, but no one is there, does it have a color?

= table 5.2 Typical Hue Names Associated with Spectral Energy Bands

Approximate Wavelength Region (in nm)	Associated Hue
980-470 470-475 475-480 480-485 485-495 495-535 535-555 555-565 555-565 575-580 580-585 580-585 585-595 595-770	Reddish blue Blue Greenish blue Blue-green Bluish green Green Yellowish green Green-yellow Greenish yellow Yellow Reddish yellow Yellow-red Yellowish red ^a

- 3) Color mixture
 - a) Primary Colors
 - b) Secondary Colors
 - c) Tertiary Colors
 - d) Additive color mixture
 - i) Color circle
 - ii) Complementary colors
 - (1) Adding even amounts of two colors
 - (2) Adding different amounts of colors
 - (3) Reducing intensity of each component
 - iii) Metamer
 - iv) Primary colors
 - (1) Why 3 colors? Why not 4 or 5 primary colors?
 - v) Pointillism (Seurat, Signac)
 - vi) Television/Computer Monitors

Spring, 2020

Psychology 4041/6014

e) Subtractive color mixture

Spring, 2020

- 4) Effects in color vision
 - a) After images
 - i) Negative after image

- b) Memory color
- c) Color constancy
- 5) Theories of color perception
 - a) Need for a theory
 - b) Theories:
 - i) Trichromatic Receptor Theory
 - ii) Opponent Process Theory

Psychology 4041/6014

Spring, 2020

c) Trichromatic Receptor Theory (Young-Helmholtz)

- i) Cone types
 - (1) S, M, L cones (=B, G, R cones)
 - (a) Photopigments
 - (2) Retina acts as a spectral analyzer
- ii) Explanatory power
 - (1) Sidebar: Cone functioning
 - (2) Complementary afterimages
- iii) Questions
 - (1) Are there things that Trichromatic Theory cannot explain?
 - (a) Adding blue light to yellow light yields white or gray(i) The Trichromatic Theory explains this as...
 - (ii) But...
 - (b) Visualization: You cannot visualize reddish-green or bluish-yellow

Blue (short wavelength) ~445 nm
Cyanolabe
5-10% of cones
sparse
periphery of fovea
Green (medium) ~535 nm
Chlorolabe
30% of cones
many more
center of fovea
Red (long) ~570 nm
Erythrolabe
60% of cones
many, many more
center of fovea

Psychology 4041/6014

- d) Opponent Process Theory (Hering; Hurvich & Jameson)
 - i) Two stage process
 - (1) 3 cones system at retina
 - (2) 3 opponent processes at higher levels
 - (a) white-black
 - (b) blue-yellow
 - (c) red-green

- e) Blobs in cortex
 - i) Color-opponent neurons with *double-opponent* receptive fields
 - ii) Center surround
 - iii) A series of these cells can detect color bars, as well as patterns of green-red-green-red, etc.

- 6) Defective color vision
 - a) Monochromatism
 - b) Dichromatism
 - i) Protanopia
 - ii) Deuteranopia
 - iii) Tritanopia
 - c) Trichromatism anomaly
 - i) Protoanomaly
 - ii) Deuteranomaly
 - d) Achromatopsia
- 7) Subjective colors
 - a) Benham's top
 - b) Kinetic art (e.g., Jesus Soto)