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Vision by Man and Machine 
How does an animal see? How might a computer do it? A study of stereo 
vision guides research on both these questions. Brain science suggests 
computer programs; the computer suggests what to look for in the brain 

T
he development of computers of 
increasing power and sophistica­
tion often stimulates comparisons 

between them and the human brain, 
and these comparisons are becoming 
more earnest as computers are applied 
more and more to tasks formerly as­
sociated with essentially human activ­
ities and capabilities. Indeed, it is wide­
ly expected that a coming generation of 
computers and robots will have senso­
ry, motor and even "intellectual" skills 
closely resembling our own. How might 
such machines be designed? Can our 
rapidly growing knowledge of the hu­
man brain be a guide? And at the same 
time can our advances in "artificial in­
telligence" help us to understand the 
brain? 

At the level of their hardware (the 
brain's or a computer's) the differences 
are great. The neurons, or nerve cells, in 
a brain are small, delicate structures 
bound by a complex membrane and 
closely packed in a medium of support­
ing cells that control a complex and 
probably quite variable chemical envi­
ronment. They are very unlike the wires 
and etched crystals of semiconduct­
ing materials on which computers are 
based. In the organization of the hard­
ware the differences also are great. The 
connections between neurons are very 
numerous (any one neuron may receive 
many thousands of inputs) and are dis­
tributed in three dimensions. In a com­
puter the wires linking circuit compo­
nents are limited by present-day solid­
state technology to a relatively small 
number arranged more or less two-di­
mensionally. 

In the transmission of signals the dif­
ferences again are great. The binary (on­
off) electric pulses of the computer are 
mirrored to some extent in the all-or­
nothing signal conducted along nerve fi­
bers, but in addition the brain employs 
graded electrical signals, chemical mes­
senger substances and the transport of 
ions. In temporal organization the dif­
ferences are immense. Computers proc­
ess information serially (one step at a 
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time) but at a very fast rate. The time 
course of their operation is governed by 
a computer-wide clock. What is known 
of the brain suggests that it functions 
much slower but that it analyzes infor­
mation along millions of channels con­
currently without need of clock-driven 
operation. 

How, then, are brains and computers 
alike? Clearly there must be a level at 
which any two mechanisms can be com­
pared. One can compare the tasks they 
do. "To bring the good news from 
Ghent to Aix" is a description of a task 
that can be done by satellite, telegraph, 
horseback messenger or pigeon post 
equally well (unless other constraints 
such as time are specified). If, therefore, 
we assert that brains and computers 
function as information-processing sys­
tems, we can develop descriptions of the 
tasks they perform that will be equally 
applicable to either. We shall have a 
common language in which to discuss 
them: the language of information proc­
essing. Note that in this language de­
scriptions of tasks are decoupled from 
descriptions of the hardware that per­
form them. This separability is at the 
foundation of the science of artificial 
intelligence. Its goals are to make com­
puters more useful by endowing them 
with "intelligent" capabilities, and be­
yond that to understand the principles 
that make intelligence possible. 

In no field have the descriptions of in­
formation-processing tasks been more 
precisely formulated than in the study 
of vision. On the one hand it is the dom­
inant sensory modality of human be­
ings. If we want to create robots capa­
ble of performing complex manipula­
tive tasks in a changing environment, we 
must surely endow them with adequate 
visual powers. Yet vision remains elu­
sive. It is something we are good at; the 
brain does it rapidly and easily. It is 
nonetheless a mammoth information­
processing task. If it required a con­
scious effort, like adding numbers in our 
head, we would not undervalue its diffi­
culty. Instead we are easily lured into 
oversimple, noncomputational precon­
ceptions of what vision really entails. 

U ltimately, of course, one wants to 
know how vision is performed by 

the biological hardware of neurons and 
their synaptic interconnections. But vi­
sion is not exclusively a problem in anat­
omy and physiology: how nerve cells are 
interconnected and how they act. From 
the perspective of information process­
ing (by the brain or by a computer) it 
is a problem at many levels: the level 
of computation (What computational 
tasks must a visual system perform?), 
the level of algorithm (What sequence 
of steps completes the task?) and then 
the level of hardware (How might neu-

STEREO VISION BY A COMPUTER exemplifies the study of vision as a problem in infor­
mation processing. The images at the top of the opposite page are aerial photographs provided 
by Robert J. Woodham of the University of British Columbia. They show part of the universi­
ty's campus. In two ways they mimic the visual data on which biological vision is based. First, 
they were made from different angles, so that objects in one image have a slightly different po­
sition in the other. The two eyes of human beings also see the world from different angles. Sec­
ond, the images were made by a mosaic of microelectronic sensors, each of whic!t measures the 
intensity of light along a particular line of sight. The photoreceptor cells of the eye do much 
the same thing. The map at the bottom was generated by a computer programmed to follow 
an algorithm, or procedure, devised by David Marr and the author at the Artificial Intelli­
gence Laboratory of the Massachusetts Institute of Technology and further developed there 
by W. Eric L. Grimson. The computer filtered the images to emphasize spatial changes in 
intensity. Then it performed stereopsis: it matched features from one image to the other, de­
termined the disparity between their positions and calculated their relative depths in the three­
dimensional world. Increasing elevations in the map are coded in colors from blue to red. 
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225 221 216 219 219 214 207 218 219 220 207 155 136 135 130 131 125 

213 206 213 223 208 217 223 221 223 216 195 156 141 130 128 138 123 
206 217 210 216 224 223 228 230 234 216 207 157 136 132 137 130 128 

211 213 221 223 220 222 237 216 219 220 176 149 137 132 125 136 121 

216 210 231 227 224 228 231 210 195 227 181 141 131 133 131 124 122 

223 229 218 230 228 214 213 209 198 224 161 140 133 127 133 122 133 

220 219 224 220 219 215 215 206 206 221 159 143 133 131 129 127 127 

221 215 211 214 220 218 221 212 218 204 148 141 131 130 128 129 118 

214 211 211 218 214 220 226 216 223 209 143 141 141 124 121 132 125 

211 208 223 213 216 226 231 230 241 199 153 141 136 125 131 125 136 

200 224 219 215 217 224 232 241 240 211 150 139 128 132 129 124 132 

204 206 208 205 233 241 241 252 242 192 151 141 133 130 127 129 129 

200 205 201 216 232 248 255 246 231 210 149 141 132 126 134 128 139 

191 194 209 238 245 255 249 235 238 197 146 139 130 132 129 132 123 

189 199 200 227 239 237 235 236 247 192 145 142 124 133 125 138 128 

198 196 209 211 210 215 236 240 232 177 142 137 135 124 129 132 128 

198 203 205 208 211 224 226 240 210 160 139 132 129 130 122 124 131 

216 209 214 220 210 231 245 219 169 143 148 129 128 136 124 128 123 

211 210 217 218 214 227 244 221 162 140 139 129 133 131 122 126 128 

215 210 216 216 209 220 248 200 156 139 131 129 139 128 123 130 128 

219 220 211 208 205 209 240 217 154 141 127 130 124 142 134 128 129 

229 224 212 214 220 229 234 208 151 145 128 128 142 122 126 132 124 

252 224 222 224 233 244 228 213 143 141 135 128 131 129 128 124 131 

255 235 230 249 253 240 228 193 147 139 132 128 136 125 125 128 119 

250 245 238 245 246 235 235 190 139 136 134 135 126 130 126 137 132 

240 238 233 232 235 255 246 168 156 141 129 127 136 134 135 130 126 

�41 242 225 219 225 255 255 183 139 141 126 139 128 137 128 128 130 
234 218 221 217 211 252 242 166 144 139 132 130 128 129 127 121 132 

231 221 219 214 218 225 238 171 145 141 124 134 131 134 131 126 131 

228 212 214 214 213 208 209 159 134 136 139 134 126 127 127 124 122 

219 213 215 215 205 215 222 161 135 141 128 129 131 128 125 128 127 

BEGINNING OF VISION for an animal or a computer is a gray-level array: a point-by-point 
representation of the intensity of light produced by a grid of detectors in the eye or in a dig­
ital camera. The image at the top of this illustration is such an array. It was produced by a 
digital camera as a set of intensity values in a grid of 576 by 454 picture elements ("pixels"). In­
tensity values for the part of the image inside the rectangle are given digitally at the bottom. 
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rons or electronic circuits execute the 
algorithm?). Thus an attack on the prob­
lem of vision requires a variety of 
aids, including psychophysical evidence 
(that is, knowledge of how well people 
can see) and neurophysiological data 
(knowledge of what neurons can do). 
Finding workable algorithms is the most 
critical part of the project, because algo­
rithms are constrained both by the com­
putation and by the available hardware. 

Here I shall outline an effort in which 
I am involved, one that explores a se­
quence of algorithms first to extract 
information, notably edges, or pro­
nounced contours in the intensity of 
light, from visual images and then to 
calculate from those edges the depths of 
objects in the three-dimensional world. I 
shall concentrate on a particular aspect 
of the task, namely stereopsis, or stereo 
vision. Not the least of my reasons is the 
central role stereopsis has played in the 
work on vision that my colleagues and I 
have done at the Artificial Intelligence 
Laboratory of the Massachusetts Insti­
tute of Technology. In particular, stere­
opsis has stimulated a close investiga­
tion of the very first steps in visual infor­
mation processing. Then too, stereopsis 
is deceptively simple. As with so many 
other tasks that the brain performs with­
out effort, the development of an au­
tomatic system with stereo vision has 
proved to be surprisingly difficult. Final­
ly, the study of stereopsis benefits from 
the availability of a large body of psy­
chophysical evidence that defines and 
constrains the problem. 

The information available at the out­
set of the process of vision is a two­

dimensional array of measurements of 
the amount of light reflected into the eye 
or into a camera from points on the sur­
faces of objects in the three-dimension­
al visual world. In the human eye the 
measurements are made by photorecep­
tors (rod cells and cone cells), of which 
there are more than 100 million. In a 
camera that my colleagues and I use at 
the Artificial Intelligence Laboratory 
the processes are different but the result 
is much the same. There the. measure­
ments are made by solid-state electronic 
sensors. They produce an array of 1,000 
by 1,000 light-intensity values. Each 
value is a pixel, or picture element. 

In either case it is inconceivable that 
the gap between the raw image (the 
large array of numbers produced by the 
eye or the camera) and vision (know­
ing what is around, and where) can be 
spanned in a single step. One concludes 
that vision requires various processes­
one thinks of them as modules-operat­
ing in parallel on raw images and pro­
ducing intermediate representations of 
the images on which other processes can 
work. For example, several vision mod­
ules seem to be involved in reconstruct-
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ing the three-dimensional geometry of 
the world. A short list of such modules 
would have to include modules that de­
duce shape from shading, from visual 
texture, from motion, from contours, 
from occl usions and from stereopsis. 
Some may work directly on the raw im­
age (the intensity measurements). Of­
ten, however, a module may operate 
more effectively on an intermediate 
representation. 

Stereopsis arises from the fact that 
our two eyes view the visual world from 
slightly different angles. To put it anoth­
er way, the eyes converge slightly, so 
that their axes of vision meet at a point 
in the visual world. The point is said to 
be fixated by the eyes, that is, the image 
of the point falls on the center of vision 
of each retina. Any neighboring point 
in the visual field will then project to a 
point on each retina some distance from 
the center of vision. In general this dis­
tance will not be the same for both 
eyes. In fact, the disparity in distance 
will vary with the depth of the point 
in the visual field with respect to the 
fixated point. 

Stereopsis, then, is the decoding of 
three-dimensionality from binocular dis­
parities. It might appear at first to be a 
straightforward problem in trigonom­
etry. One might therefore be tempted to 
program a computer to solve it that way. 
The effort would fail; our own facility 
with stereopsis has led us to gloss over 
the central difficulty of the task, as we 
may see if we formally set out the steps 
involved in the task. They are four: A 
location in space must be selected from 
one retinal image. The same location 
must be identified in the other retinal 
image. Their positions must be meas­
ured. From the disparity between the 
two measurements the distance to the 
location must be calculated. 

The last two steps are indeed an exer­
cise in trigonometry (at least in the 

cases considered in this article). The first 
two steps are different. They require, in 
effect, that the projection of the same 
point in the physical world be found in 
each eye. A group of contiguous photo­
receptors in one eye can be thought of as 
looking along a line of sight to a patch of 
the surface of some object. The photore­
ceptors looking at the same patch of sur­
face from the opposite eye must then be 
identified. Because of binocular dispari­
ty they will not be at the same position 
with respect to the center of vision. 

This, of course, is where the difficulty 
lies. For us the visual world contains 
surfaces that seem effectively labeled 
because they belong to distinct shapes in 
specific spatial relations to one another. 
One must remember, however, that vi­
sion begins with no more than arrays of 
raw light intensity measured from point 
to point. Could it be that the brain 

BINOCULAR DISPARITIES are the basis for stereopsis. They arise because the eyes con­
verge slightly, so that their axes of vision meet at a point in the external world (a). The point 
is "fixated." A neighboring point in the world (b) will then project to a point on the retina 
some distance from the center of vision. The distance will not be the same for each eye. 

matches patterns of raw light intensity 
from one eye to the other? Probably not. 
Experiments with computers place lim­
its on the effectiveness of the matching, 
and physiological and psychophysical 
evidence speaks against it for the human 
visual system. For one thing, a given 
patch of surface will not necessarily re­
flect the same intensity of light to both 
eyes. More important, patches of sur-

face widely separated in the visual 
world may happen to have the same in­
tensity. Matching such patches would 
be incorrect. 

A discovery made at AT&T Bell Lab­
oratories by Bela Iulesz shows the full 
extent of the problem. Iulesz devised 
pairs of what he called random-dot ster­
eograms. They are visual stimuli that 
contain no perceptual clues except bin-

RANDOM-DOT STEREO GRAMS devised by Bela Julesz of AT&T Bell Laboratories are 
visual textures containing no clues for stereo vision except binocular disparities. The stereo­
grams themselves are the same random texture of black and white dots (top). In one of them, 
however, a square of the texture is shifted toward the left; in the other it is shifted toward the 
right (bottom). The resulting hole in each image is filled with more random dots (gray areas). 
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ocular disparities. To make each pair he 
generated a random texture of black and 
white dots and made two copies of it. In 
one of the copies he shifted an area of 
the pattern, say a square. In the other 
copy he shifted the square in the op­
posite direction. He filled the result­
ing hole in each pattern with more ran­
dom texture. Viewed one at a time each 
such pattern looked uniformly random. 
Viewed through a stereoscope, so that 
each eye saw one of the patterns and the 
brain could fuse the two, the result was 
startling. The square gave a vivid im­
pression of floating in front of its sur­
roundings or behind them. Evidently 
stereopsis does not require the prior per­
ception of objects or the recognition 
of shapes. 

] UleSZ' discovery enables one to for­
mulate the computational goal of 
stereopsis: it is the extraction of bin­

ocular disparities from a pair of images 
without the need for obvious monocular 
clues. In addition the discovery enables 
one to formulate the computational 
problem inherent in stereopsis. It is the 
correspondence problem: the matching 
of elements in the two images that cor­
respond to the same location in space 
without the recognition of objects or 
their parts. In random-dot stereo grams 
the black dots in each image are all the 
same: they have the same size, the same 
shape and the same brightness. Any one 
of them could in principle be matched 
with any one of a great number of dots 
in the other image. And yet the brain 
solves this false-target dilemma: it con­
sistently chooses only the correct set 
of matches. 

It must use more than the dots them­
selves. In particular, the fact that the 
brain can solve the correspondence prob­
lem shows it exploits a set of implicit 
assumptions about the visual world, 
assumptions that constrain the corre-

spondence problem, making it deter­
mined and solvable. In 1976 David 
Marr and I, working at M.LT., found 
that simple properties of physical sur­
faces could limit the problem sufficient­
ly for the stereopsis algorithms (proce­
dures to be followed by a computer) we 
were then investigating. These are, first, 
that a given point on a physical surface 
has only one three-dimensional location 
at any given time and, second, that phys­
ical objects are cohesive and usually are 
opaque, so that the variation in depth 
over a surface is generally smooth, with 
discontinuous changes occurring only 
at boundary lines. The first of these 
constraints-uniqueness of location­
means that each item in either image 
(say each dot in a random-dot stereo­
gram) has a unique disparity and can be 
matched with no more than one item 
in the other image. The second con­
straint-continuity and opacity-means 
that disparity varies smoothly except at 
object boundaries. 

Together the two constraints provide 
matching rules that are reasonable and 
powerful. I shall describe some simple 
ones below. Before that, however, it 
is necessary to specify the items to be 
matched. After all, the visual world is 
not a random-dot stereogram, consist­
ing only of black and white dots. We 
have already seen that intensity values 
are too unreliable. Yet the information 
the brain requires is encrypted in the in­
tensity array provided by photorecep­
tors. If an additional property of physi­
cal surfaces is invoked, the problem is 
simplified. It is based on the observation 
that at places where there are physical 
changes in a surface, the image of the 
surface usually shows sharp variations 
in intensity. These variations (caused by 
markings on a surface and by variations 
in its depth) would be more reliable to­
kens for matching than raw intensities 
would be. 

VIVID PERCEPTION OF DEPTH results when the random-dot stereograms shown in the 
bottom illustration on the preceding page are viewed through a stereoscope, so that each eye 
sees one of the pair and the brain can fuse the two. The sight of part of the image "floating" 
establishes that stereopsis does not require the recognition of objects in the visual world. 

110 

Instead of raw numerical values of in­
tensity, therefore, one seeks a more sym­
bolic, compact and robust representa­
tion of the visual world: a description of 
the world in which the primitive sym­
bols-the signs in which the visual world 
is coded-are intensity variations. Marr 
called it a "primal sketch." In essence it 
is the conversion of the gray-level arrays 
provided by the visual photoreceptors 
into a form that makes explicit the posi­
tion, direction, scale and magnitude of 
significant light-intensity gradients, with 
which the brain's stereopsis module 
can solve the correspondence problem 
and reconstruct the three-dimensional 
geometry of the visual world. I shall 
describe a scheme we have been using 
at the Artificial Intelligence Laboratory 
for the past few years, based on old and 
new ideas developed by a number of 
investigators, primarily Marr, Ellen C. 
Hildreth and me. It has several attrac­
tive features: it is fairly simple, it works 
well and it shows interesting resemblan­
ces to biological vision, which, in fact, 
suggested it. It is not, however, the full 
solution. Perhaps it is best seen as a 
working hypothesis about vision. 

Basically the changes of intensity in an 
image can be detected by compar­

ing neighboring intensity values in the 
image: if the difference between them is 
great, the intensity is changing rapidly. 
In mathematical terms the operation 
amounts to taking the first derivative. 
(The first derivative is simply the rate 
of change of a mathematical function. 
Here it is simply the rate at which inten­
sity changes on a path across the gray­
level array.) The position of an extremal 
value-a peak or a pit-in the first deriv­
ative turns out to localize the position of 
an intensity edge quite well [see illustra­
tion on opposite page]. In turn the inten­
sity edge often corresponds to an edge 
on a physical surface. The second deriv­
ative also serves well. It is simply the 
rate of change of the rate of change 
and is obtained by taking differences 
between neighboring values of the first 
derivative. In the second derivative an 
intensity edge in the gray-level array 
corresponds to a zero-crossing: a place 
where the second derivative crosses 
zero as it falls from positive values to 
negative values or rises from negative 
values to positive. 

Derivatives seem quite promising. 
Used alone, however, they seldom work 
on a real image, largely because the in­
tensity changes in a real image are rarely 
clean and sharp changes from one in­
tensity value to another. For one thing, 
many different changes, slow and fast, 
often overlap on a variety of different 
spatial scales. In addition changes in in­
tensity are often corrupted by the visual 
analogue of noise. They are corrupted, 
in other words, by random disruptions 
that infiltrate at different stages as the 
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image formed by the optics of the eye or 
of a camera is transduc.ed into an array 
of intensity measurements. In order to 
cope both with noisy edges and with 
edges at different spatial scales the im­
age must be "smoothed" by a local 
averaging of neighboring intensity val­
ues. The differencing operation that 
amounts to the taking of first and second 
derivatives can then be performed. 

There are various ways the sequence 
can be managed, and much theoretical 
effort has gone into the search for opti­
mal methods. In one of the simplest the 
two operations-smoothing and differ­
entiation-are combined into one. In 
technical terms it sounds forbidding: the 
image is convolved with a filter that 
embodies a particular center-surround 
function, the Laplacian of a Gaussian. It 
is not as bad as it sounds. A two-dimen­
sional Gaussian is the bell-shaped distri­
bution familiar to statisticians. In this 
context it specifies the importance to be 
assigned to the neighborhood of each 
pixel when the image is being smoothed. 
As the distance increases, the impor­
tance decreases. A Laplacian is a second 
derivative that gives equal weight to all 
paths extending away from a point. The 
Laplacian of a Gaussian converts the 
bell-shaped distribution into something 
more like a Mexican hat. The bell is nar­
rowed and at its sides a circular negative 
dip develops. 

Now the procedure can be described 
nontechnically. Convolving an im­

age with a filter that embodies the La­
placian of a Gaussian is equivalent to 
substituting for each pixel in the image 
a weighted average of neighboring pix­
els, where the weights are provided by 
the Laplacian of a Gaussian. Thus the 
filter is applied to each pixel. It assigns 
the greatest positive weight to that pix­
el and decreasing positive weights to 
the pixels nearby [see illustration on 
next two pages]. Then' comes an annu­
lus-a ring-in which the pixels are 
given negative weightings. Bright points 
there feed negative numbers into the av­
eraging. The result of the overall filter­
ing is an array of positive and negative 
numbers: a kind of second derivative of 
the image intensity at the scale of the 
filter. The zero-crossings in this filtered 
array correspond to places in the origi­
nal image where its intensity changed 
most rapidly. Note that a binary (that is, 
a two-valued) map showing merely the 
positive and negative regions of the fil­
tered array is essentially equivalent to a 
map· of the zero-crossings in that one 
can be constructed from the other. 

In the human brain most of the hard­
ware required to perform such a filter­
ing seems to be present. As early as 1865 
Ernst Mach observed that visual per­
ception seems to enhance spatial varia­
tions in light intensity. He postulated 
that the enhancement might be achieved 

a a' 

b b' 

c c' 

d 

1_\_1 
SPATIAL DERIVATIVES of an image serve to emphasize its spatial variations in intensity. 

The left part of the illustration shows an edge between two even shades of gray (a). The intensi­

ty along a path across the edge appears below it (b). The first derivative of the intensity is the 

rate at which intensity changes (c). Toward the left or toward the right there is no change; the 

first derivative therefore is zero. Along the edge itself, however, the rate of change rises and 

falls. The second derivative of the intensity is the rate of change of the rate of change (d). Both 

derivatives emphasize the edge. The first derivative marks it with a peak; the second derivative 

marks it by crossing zero. The right part of the illustration shows an edge more typical of the 

visual world (a'). The related intensity contour (b') and its first and second derivatives (c', d') 
are "noisy." The edge must be smoothed before derivatives are taken. This illustration and the 

one on page 108 were prepared by H. Keith Nishihara of the Artificial Intelligence Laboratory. 

by lateral inhibition, a brain mechanism 
in which the excitation of an axon, or 
nerve fiber, say by a spot of bright light 
in the visual world, blocks the excitation 
of neighboring axons. The operation 
plainly enhances the contrast between 
the bright spot and its surroundings. 
Hence it is similar to the taking of a 
spatial derivative. 

Then in the 1950's and 1960's evi­
dence accumulated suggesting that the 
retina does something much like cen­
ter-surround filtering. The output from 
each retina is conveyed to the rest of the 
brain by about a million nerve fibers, 
each being the axon of a neuron called a 
retinal ganglion cell. The cell derives its 

input (by way of intermediate neurons) 
from a group of photoreceptors, which 
form a "receptive field." What the evi­
dence suggests is that for certain gangli­
on cells the receptive field has a center­
surround organization closely approx­
imating the Laplacian of a Gaussian. 
Brightness in the center of the receptive 
field excites the ganglion cell; brightness 
in a surrounding annulus inhibits it. In 
short, the receptive field has an ON-cen­
ter and an OFF-surround, just like the 
Mexican hat. 

Other ganglion cells have the opposite 
properties: they are OFF-center, ON-sur­
round. If axons could signal negative 
numbers, these cells would be red un-
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dant: they report simply the negation of 
what the ON-center cells report. Neu­
rons, however, cannot readily transmit 
negative activity; the ones that transmit 
all-or-nothing activity are either active 
or quiescent. Nature, then, may need 
neuronal opposites. Positive values in 
an image subjected to center-surround 
filtering could be represented by the ac­
tivity of ON-center cells; negative values 
could be represented by the activity of 
OFF-center cells. In this regard I cannot 
refrain from mentioning the recent find­
ing that ON-center and OFF-center gan­
glion cells are segregated into two dif­
ferent layers, at least in the retina of 
the cat. The maps generated by our 
computer might thus depict neural ac­
tivity rather literally. In the maps on 

the opposite page red might correspond 
to oN-layer activity and blue to OFF­
layer activity. Zero-crossings (that is, 
transitions from one color to the other) 
would be the locations where activity 
switches from one layer to the other. 
Here, then, is a conjecture linking a 
computational theory of vision to the 
brain hardware serving biological vision. 

It should be said that the center-sur­
round filtering of an image is computa­
tionally expensive for a computer be­
cause it involves great numbers of mul­
tiplications: about'a billion for an image 
of 1,000 pixels by 1,000, At the Artificial 
Intelligence Laboratory, H. Keith Nishi­
hara and Noble G, Larson, Jr. , have de­
signed a specialized device: a convolver 
that performs the operation in about a 

second. The speed is impressive but is 
plodding compared with that of the reti­
nal ganglion cells. 

I should also mention the issue of spa­
tial scale. In an image there are fine 

changes in intensity as well as coarse, 
All must be detected and represented. 
How can it be done? The natural solu­
tion (and the solution suggested by phys­
iology and psychophysics) is to use cen­
ter-surround filters of different sizes, 
The filters turn out to be band-pass: they 
respond optimally to a certain range of 
spatial frequencies. In other words, they 
"see" only changes in intensity from pix­
el to pixel that are neither too fast nor 
too slow, For any one spatial scale the 
process of finding intensity changes con-

1< )1 5 PIXELS 

\<EE'---------- 576 PIXELS ---------�)I 
\<EE'------ 16 PIXELS -----::>�I 

CENTER-SURROUND FILTERING of an image serves both to 
smooth it and to take its second spatial derivative. Here an image is 
shown at the left. Then filters of two sizes are shown, They are depict­
ed schematically; the "filter" is actually computational. Specifically 
each intensity measurement in the image is replaced by a weighted 
average of neighboring measurements. Nearby measurements con­
tribute positive weights to the average; thus the filter's center is "ex­
citatory" (red). Then comes an annulus, or ring, in which the meas­
urements contribute negative weights; thus the filter's "surround" is 
"inhibitory" (blue). The third part of the illustration shows the maps 
produced by the filters. They are no longer gray-level arrays. For 
one thing the maps have both positive values (red) and negative val­
ues (blue). They are maps of the second derivative. Transitions from 
one color to the other are zero-crossings; that is, they mark the places 
in the original image where its intensity changed most rapidly. The 
maps at the right of the illustration emphasize the zero-crossings 
by showing only positive regions (red) and negative regions (blue). 
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sists, therefore, of filtering the image 
with a center-surround filter (or recep­
tive field) of a particular size and then 
finding the zero-crossings in the filtered 
image. For a combination of scales it is 
necessary to set up filters of different 
sizes, performing the same computation 
for each scale. Large filters would then 
detect soft or blurred edges as well as 
overall illumination changes; small fil­
ters would detect finer details. Sharp 
edges would be detected at all scales. 

Recent theoretical results enhance the 
attractiveness of this idea by showing 
that features similar to zero-crossings 
in a filtered image can be rich in infor­
mation. First, Ben Logan of Bell Labo­
ratories has proved that a one-dimen­
sional signal filtered through a certain 

class of filters can be reconstructed from 
its zero-crossings alone. The Laplacian 
of a Gaussian does not satisfy Logan's 
conditions exactly. Still, his work sug­
gests that the primitive symbols provid­
ed by zero-crossings are potent visual 
symbols. More recently Alan Yuille and 
I have made a theoretical analysis of 
center-surround filtering. We have been 
able to show that zero-crossing maps 
obtained at different scales can repre­
sent the original image completely, that 
is, without any loss of information. 

This is not to say that zero-crossings 
are the optimal coding scheme for a 
process such as stereopsis. Nor is it to 
insist that zero-crossings are the sole ba­
sis of biological vision. They are a can­
didate for an optimal coding scheme, 

and they (or something like them) may 
be important among the items to be 
matched between the two retinal im­
ages. We have, therefore, a possible an­
swer to the question of what the stereop­
sis module matches. In addition we have 
the beginning of a computational theory 
that may eventually give mathemati­
cal precision to the vague concept of 
"edges" and connect it to known prop­
erties of biological vision, such as the 
prominence of "edge detector" cells 
discovered at the Harvard Medical 
School by David H. Hubel and Torsten 
N. Wiesel in the part of the cerebral cor­
tex where visual data arrive. 

To summarize, a combination of com­
putational arguments and biological 
data suggests that an important first 
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step for stereopsis and other visual 
processes is the detection and marking 
of changes in intensity in an image at 
different spatial scales. One way to do it 
is to filter the image by the Laplacian of 
a Gaussian; the zero-crossings in the fil­
tered array will then correspond to in­
tensity edges in the image. Similar infor­
mation is implicit in the activity of ON­
center and OFF-center ganglion cells in 
the retina. To explicitly represent the 
zero-crossings (if indeed the brain does 
it at all) a class of edge-detector neurons 
in the brain (no doubt in the cerebral 
cortex) would have to perform specific 
operations on the output of ON-center 
and OFF-center cells that are neighbors 
in the retina. Here, however, one comes 
up against the lack of information about 
precisely what elementary computa­
tions nerve cells can readily do. 

We are now in a position to see how a 
representation of intensity changes 

might be useful for stereopsis. Consider 
first an algorithm devised by Marr and 
me that implements the constraints dis­
cussed above, namely uniqueness (a giv-

PHOTORECEPTOR 

RETINAL GANGLION CELL 

en point on a physical surface has only 
one location, so that only one binocular 
match is correct) and continuity (varia­
tions in depth are generally smooth, so 
that binocular disparities tend to vary 
smoothly). It is successful at solving ran­
dom-dot stereograms and at least some 
natural images. It is done by a comput­
er; thus its actual execution amounts 
to a sequence of calculations. It can 
be thought of, however, as setting up 
a three-dimensional network of nodes, 
where the nodes represent all possible 
intersections of lines of sight from the 
eyes in the three-dimensional world. 
The uniqueness constraint will then 
be implemented by requiring that the 
nodes along a given line of sight inhibit 
one another. Meanwhile the continuity 
constraint will be implemented by re­
quiring that each node excite its neigh­
bors. In the case of random-dot stereo­
grams the procedure will be relatively 
simple. There the matches for pixels on 
each horizontal row in one stereogram 
need be sought only along the corre­
sponding row of the other stereogram. 

The algorithm starts by assigning a 

BIOLOGICAL FILTER embodied by cells in the retina resembles in its effect the computer 
procedure shown in the illustration on the preceding two pages. The filter begins with a layer 
of photoreceptors, which measure the light intensity of the visual world. They are connected 
by way of intermediate nerve cells not shown in the diagram to a layer of retinal ganglion cells, 
which send visual data to higher visual centers of the brain. For the sake of simplicity only one 
set of connections is shown. A photoreceptor cell (red) excites an "ON center" ganglion cell 
by promoting its tendency to generate neural signals; the surrounding photoreceptors (blue) 
inhibit the ganglion cell. The arrangement amounts to biological center-surround filtering. 
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value of 1 to all nodes representing a 
binocular match between two white pix­
els or two black pixels in the pair of 
stereograms. The other nodes are giv­
en a value of O. The l's thus mark all 
matches, true and false [see illustration 
on opposite page]. Next the algorithm 
performs an algebraic sum for each 
node. In it the neighboring nodes with a 
value of 1 contribute positive weights; 
the nodes with a value of 1 along lines of 
sight contribute negative weights. If the 
result exceeds some threshold value, the 
node is given the value of 1; otherwise 
the node is set to O. That constitutes one 
iteration of the procedure. After a few 
such iterations the network reaches sta­
bility. The stereopsis problem is solved. 

The algorithm has some great virtues. 
It is a cooperative algorithm: it con­

sists of local calculations that a large 
number of simple processors could per­
form asynchronously and in parallel. 
One imagines that neurons could do 
them. In addition the algorithm can fill 
in gaps in the data. That is, it interpo­
lates continuous surfaces. At the same 
time it allows for sharp discontinui­
ties. On the other hand, the network it 
would require to process finely detailed 
natural images would have to be quite 
large, and most of the nodes in the net­
work would be idle at any one time. 
Furthermore, intensity values are un­
satisfactory for images more natural 
than random-dot stereograms. 

The algorithm's effectiveness can be 
extended to at least some natural images 
by first filtering the images to obtain the 
sign of their convolution with the La­
placian of a Gaussian. The resulting bi­
nary maps then serve as inputs for the 
cooperative algorithm. The maps them­
selves are intriguing. In the ones gener­
ated by large filters at correspondingly 
low spatial resolution, zero-crossings of 
a given sign (for instance the crossings at 
which the sign of the convolution chang­
es from positive to negative) turn out to 
be quite rare and are never close to each 
other. Thus false targets (matches be­
tween noncorresponding zero-crossings 
in a pair of stereograms) are essentially 
absent over a large range of disparities. 

This suggests a different class of stere­
opsis algorithms. One such algorithm, 
developed recently for robots by Ni­
shihara, matches positive or negative 
patches in filtered image pairs. Another 
algorithm, developed earlier by Marr 
and me, matches zero-crossings of the 
same sign in image pairs made by fil­
ters of three or more sizes. First the 
coarsely filtered images are matched 
and the binocular disparities are meas­
ured. The results are employed to ap­
proximately register the images. (Mo­
nocular features such as textures could 
also be used.) A similar matching proc­
ess is then applied to the medium-fil­
tered images. Finally the process is ap-
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STEREOPSIS ALGORITHM devised by Marr and the author reconstructs the three-dimen­
sional visual world by seeking matches between dots on corresponding rows of a pair of ran­
dom-dot stereograms. At the top of the illustration two such rows are shown (black and white). 
Below them the rows are placed along the axes of a chart. Horizontal lines across the chart 
then represent lines of sight for the right eye; vertical lines represent lines of sight for the left 
eye. Color marks all intersections at which the eyes both see a black dot or a white dot. The 
problem is plain. A given black dot in one stereogram could in principle match any black dot in 
the other. The same is true for the white dots. Yet only some matches are correct (open colored 
circles), that is, only some matches reveal that a square of random-dot texture has a binocu­
lar disparity. The explanation of the algorithm continues in the illustration on the next page. 

plied to the most finely filtered images. 
By that time the binocular disparities in 
the stereo pair are known in detail, and 
so the problem of stereopsis has been 
reduced to trigonometry. 

Atheoretical extension and computer 
implementation of our algorithm 

by W. Eric L. Grimson at the Artificial 
Intelligence Laboratory works quite 
well for a typical application of stereo 
systems: the analysis of aerial photo­
graphs. In addition it mimics many of 
the properties of human depth percep­
tion. For example, it performs success­
fully when one of the stereo images is 
out of focus. Yet there may also be sub­
tle differences. Recent work by John 
Mayhew and John P. Frisby at the Uni­
versity of Sheffield and by J ulesz at Bell 
Laboratories should clarify the matter. 

What can one say about biological 

stereopsis? The algorithms I have de­
scribed are still far from solving the 
correspondence problem as effectively 
as our own brain can. Yet they do sug­
gest how the problem is solved. Mean­
while investigations of the cerebral cor­
tex of the cat and of the cerebral cortex 
of the macaque monkey have shown 
that certain cortical neurons signal bin­
ocular disparities. And quite recent­
ly Gian F. Poggio of the Johns Hop­
kins University School of Medicine has 
found cortical neurons that signal the 
correct binocular disparity in random­
dot stereograms In which there are 
many false matches. His discovery, to­
gether with our computational analysis 
of stereopsis, promises to yield insight 
into the brain mechanisms underlying 
depth perception. 

One message should emerge clearly: 
the extent to which the computer and 

Amateur 
1elescope 
MaIdng 
Edited by Albert G. Ingalls 
Foreword by Harlow Shapley 

This three-book set is the 
authoritative reference library 
of the enthralling hobby of 
amateur telescope making. 
Through these books thou­
sands have discovered a fasci ­
nating mechanical art com­
bined with a great science. 

BOOK ONE begins at the 
beginning, teaches the basics 
of glass grinding and how to 
complete the first telescope. 
(510 pages, 300 illustrations.> 

BOOK TWO leads on into ad­
vanced methods of amateur 
optical work and describes 
new projects for the tele­
scope maker. (650 pages, 
361 illustrations.) 

BOOK THREE opens up 
further fields of enterprise: 
binoculars, camera lenses, 
spectrographs, Schmidt 
optics, ray tracing (made 
easy). (646 pages, 320 
ill ustrations.) 

r SCIENTI FlC -------, 
AM E RI CAN ATM Dept, I 415 Madison Avenue, New York, N. Y 10017 

I 
Please send me postpaid the I 
following AMATEUR TELE- I 
SCOPE MAKING books. I 
My remittance of $ I 
is enclosed. I 
o BOOK ONE $10.00 I 
o BOOK TWO $12.50 
o BOOK THREE $12.50 I 
For U.S. shipments add $1.00 each; 
elsewhere add $2.00 each. 

Name ____________________ ___ 

Address _________ _ 

City __________ _ 

State _____ Z ip ___ _ 

I 
I 
I 
I 
I 
I 
I 

ReSidents of New York City please add I 
city sales tax, Other NYS residents I 

L
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I 'm a volunteer supporter of 
the I nternational Executive Service 
Corps , a not-for-profit organization 
with a vital mission:  

We send reti red U.S .  exec­
utives to help companies in  develop­
ing countries. The executives receive 
expenses , but no salary. 

Our main purpose is to help 
developing countries succeed in  busi­
ness . But the benefit doesn't stop 
there.  These cou ntries consume about 
40 percent of U . S .  exports. 

With the support of over 
800 U . S .  companies, we have com­
pleted 8,500 projects in 72 countries. 
Our Board of Di rectors and Advisory 
Council include the CEOs of many of 
America's largest companies . 

Join me in helping busi­
nesses in developing countries . For 
more information,  write to Donald M .  
Kendal l ,  Chai rman of the Board and 
CEO, Pepsico Inc. , at 8 Stamford 
Forum,  PO.  Box 1 0005, Stamford , CT 
06904-2005. Or simply cal l  this 
number: (203) 967-6000. 

International 
Executive 
Service Corps 

... �� 

the brain can be brought together for the 
study of problems such as vision. On the 
one hand the computer provides a pow­
erful tool for testing computational the­
ories and algorithms. In the process it 
guides the design of neurophysiological 
experiments: it suggests what one should 
look for in the brain. The impetus this 
will give brain research in the coming 
decades is likely to be great. 

The benefit is not entirely in that di­
rection; computer science also stands 
to gain. Some computer scientists have 
maintained that the brain provides only 
existence proofs, that is, a living demon­
stration that a given problem has a solu­
tion. They are mistaken. The brain can 
do more: it can show how to seek solu-

tions. The brain is an information proc­
essor that has evolved over many mil­
lions of years to perform certain tasks 
superlatively well. If we regard it, with 
justified modesty, as an uncertain instru­
ment, the reason is simply that we tend 
to be most conscious of the things it 
does least well-the recent things in evo­
lutionary history, such as logic, math­
ematics and philosophy-and that we 
tend to be quite unconscious of its true 
powers, say in vision. It is in the latter 
domains that we have much to learn 
from the brain, and it is in these domains 
that we should judge our achievements 
in computer science and in robots. We 
may then begin to see what vast poten­
tial lies ahead. 

ITERATIONS OF THE ALGORITHM (depicted schematically) solve the problem of stere­
opsis, The algorithm assigns a value of 1 to all intersections of lines of sight marked by a match. 
The others are given a value of O. Next the algorithm calculates a weighted sum for every inter­
section. Surfaces in the three-dimensional world tend to vary smoothly in depth; hence neigh­
boring intersections with a value of 1 contribute positive weights to the sum. The eye sees only 
one surface along a given line of sight; hence intersections with a value of 1 along lines of sight 
contribute negative weights. If the result exceeds a threshold value, the intersection is reset 
to 1; otherwise it is reset to O. After a few iterations of the procedure the calculation is com­
plete: the stereograms are decoded. Natural images transformed into binary arrays (that is, 
into two-value zero-crossing maps) after center-surround filtering can be processed similarly. 
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Oceanus' 
The International Magazine of Marine Science and Policy 

With offices in one of the world's 

leading marine research centers 
and published by the 

Woods Hole 
Oceanographic Institution, 

Oceanus magazine is in a uni­
quely favorable position to mon­

itor significant ocean research 
and related policy issues. 

��II!I\I! •• " A case in point 
is the recent 
discoveries of 
d e e p  o c e a n  
hydrothermal 

��� vents at var­
ious locations 
in the Pacific 

Ocean. These 
discoveries are 
causing a revo­

lution in Oceanography. 

Many long-standing biological 

and geological theories are being 
revised as a result of this excit­

ing research. Exploration of the 
vents by the submersible Alvin 

is turning up new life forms (derived 
chemosynthetically rather than 
photosynthetically) and possible 

new sources of metals,  such as 

zinc, iron, and copper. Scientists 
are getting a first-hand look at 

how the earth breathes while 
garnering supporting evidence 

for the theories of sea-floor spread­

ing and plate tectonics .  

Economically, i t  i s  a time o f  great 
challenge , too .  The cost of run­

ning submersibl es and support 
ships,  for example, is high and 
rising.  And federal funding for 
marine research all the while is 

shrinking. Many critical decisions 

must be made in nearly every 
area of oceanic concern. 

O c e anus i s  
meeting this 

challenge by 
publishing ar­
ticles thathelp 
o u r  r e a d e r s ' 
grasp the sig­
nifi c an c e  of 
p r e s e n t  r e ­
s e a r c h  a n d  
t h a t  ex p o s e  

Oceanus 
Marine Policy 1 
for the 1980s • and Beyond 

them to the substance of impor­
tant public policy questio n s .  

Recent thematic issues have dealt 

with : 
• Deep Sea Mining 

• Research Vessels 
• Sharks 
• Coastal Problems 

• Pollution 
• Oceanography from Space 

Upcoming issues will look at: 

• Marine Birds 
• Oil & Gas Activities 
• Industry and the Sea 
• Polar Research 

and much, much more. 

Handsomely illustrated with many 

sharp photographs and line art, 

Oceanus is edited for all those 
with a serious interest in the 
three-quarters of our planet that 

is covered by water. The general 
readership includes many stu­

dents, educators, representatives 
from government and industry, 
environmentalists, conservation­
ists , as well as scientists in the 

disciplines of marine biology, 
geology and geophysics, chemis­
try, ocean engineering, and phys­

ical oceanography. 

In addition to the thematic edi­

torial material, Oceanus also 
features: 

PROFILES of selected ocean­
ographers that give a glimpse of 
the human side of science. 

A CONCERNS SE CTION that 

exposes the reader to controver­
sial subj ects and opinions . 

A BOOK REVIEW SE CTION 
that gives readers a convenient 

way to choose new and timely 
reading material. 

LETTERS TO THE EDITOR or 
a forum for debate on views and 
thoughts expressed in the maga­
zine. 

Won't you J om the Editors of 

Oceanus - published quarterly 
- in the exploration of the last 
great wilderness on earth, our 
oceans. Subscribe today! 

Oceanus 
SUBSCRIPTION 
ORDER FORM 

Please enter my subscription for: 
o one year at $20.00 

o two years at $35.00 

o payment enclosed 0 bill me 
(prepayment preferred) 

Please send MY Subscription to: 

Name (please print) 

Street Address 

City State Zip 
Please make checks payable to Woods Hole Ocean· 

ographic In_stitution. Checks accompanying foreign 

orders must be made payable in U.S.  currency and 

drawn on a U.S.  bank. (Outside U . S . ,  add $3 per year to 

domestic rates). Mail to: OCEANUS, Woods Hole 

Oceanographic Institution, Woods Hole, Massachu· 

setts 02543. 
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